Three-Dimensional Optimization of Blade Lean and Sweep for an Axial Compressor to Improve the Engine Performance

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-11-01 DOI:10.47176/jafm.16.11.1857
M. Heidarian, †. A.Madadi, M. Boroomand
{"title":"Three-Dimensional Optimization of Blade Lean and Sweep for an Axial Compressor to Improve the Engine Performance","authors":"M. Heidarian, †. A.Madadi, M. Boroomand","doi":"10.47176/jafm.16.11.1857","DOIUrl":null,"url":null,"abstract":"Nowadays, optimization methods have been considered as a practical tool to improve the performance of turbo-machines. For this purpose, the numerical study of the aerodynamic flow of the NASA Rotor-67 axial compressor has been investigated, and the results of this three-dimensional simulation show good agreement with experimental data. Then, the blade stacking line is changed using lean and sweep for Rotor-67 to improve the compressor performance. The third-order polynomial is selected to generate the lean and sweep changes from the hub to the shroud. The compressor flow field is solved by a Reynolds averaged Navier-Stokes solver. The genetic algorithm, coupled with the artificial neural networks, is implemented to find the optimum values for blade lean and sweep. Considering the three objective functions of pressure ratio, mass flow rate, and isentropic efficiency, the optimized rotor is obtained using the optimization algorithm. Two geometries are obtained using the optimization algorithm. The results of the optimized compressor include improving the isentropic efficiency, pressure ratio, and mass flow equal to 0.57%, 0.93%, and 1.8%, respectively. After compressor optimization, the effect of the changes in the compressor performance parameters is studied on a single spool turbojet engine. The engine is modeled by analyzing the Brayton thermodynamic cycle of the assumed turbojet engine under design point operating conditions. Results show that for the best test case, the engine with the optimized rotor, the thrust, and SFC are improved by 1.86% and 0.21%, respectively.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.11.1857","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, optimization methods have been considered as a practical tool to improve the performance of turbo-machines. For this purpose, the numerical study of the aerodynamic flow of the NASA Rotor-67 axial compressor has been investigated, and the results of this three-dimensional simulation show good agreement with experimental data. Then, the blade stacking line is changed using lean and sweep for Rotor-67 to improve the compressor performance. The third-order polynomial is selected to generate the lean and sweep changes from the hub to the shroud. The compressor flow field is solved by a Reynolds averaged Navier-Stokes solver. The genetic algorithm, coupled with the artificial neural networks, is implemented to find the optimum values for blade lean and sweep. Considering the three objective functions of pressure ratio, mass flow rate, and isentropic efficiency, the optimized rotor is obtained using the optimization algorithm. Two geometries are obtained using the optimization algorithm. The results of the optimized compressor include improving the isentropic efficiency, pressure ratio, and mass flow equal to 0.57%, 0.93%, and 1.8%, respectively. After compressor optimization, the effect of the changes in the compressor performance parameters is studied on a single spool turbojet engine. The engine is modeled by analyzing the Brayton thermodynamic cycle of the assumed turbojet engine under design point operating conditions. Results show that for the best test case, the engine with the optimized rotor, the thrust, and SFC are improved by 1.86% and 0.21%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改善发动机性能的轴流压缩机叶片倾斜和扫掠三维优化
目前,优化方法已被认为是提高汽轮机性能的实用工具。为此,对美国航空航天局(NASA)转子-67型轴流压气机的气动流动进行了数值研究,三维仿真结果与实验数据吻合较好。然后,对转子-67的叶片叠线进行了倾斜和扫掠的改变,以提高压气机的性能。选择三阶多项式来生成从轮毂到叶冠的倾斜和掠向变化。压气机流场采用Reynolds平均Navier-Stokes求解器求解。将遗传算法与人工神经网络相结合,求出叶片倾斜和扫掠的最优值。考虑压力比、质量流量和等熵效率三个目标函数,利用优化算法得到了优化后的转子。利用优化算法得到了两种几何形状。优化后的压气机等熵效率、压比和质量流量分别提高0.57%、0.93%和1.8%。压气机优化后,在单轴涡喷发动机上研究了压气机性能参数变化的影响。通过分析假定涡喷发动机在设计点工况下的布雷顿热力学循环,建立了涡喷发动机的模型。结果表明,在最佳工况下,转子优化后的发动机,推力和SFC分别提高了1.86%和0.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1