Analyzing coarsened categorical data with or without probabilistic information

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-03-01 DOI:10.1177/1536867X221083902
W. Vach, Cornelia Alder, Sandra Pichler
{"title":"Analyzing coarsened categorical data with or without probabilistic information","authors":"W. Vach, Cornelia Alder, Sandra Pichler","doi":"10.1177/1536867X221083902","DOIUrl":null,"url":null,"abstract":"In some applications, only a coarsened version of a categorical outcome variable can be observed. Parametric inference based on the maximum likelihood approach is feasible in principle, but it cannot be covered computationally by standard software tools. In this article, we present two commands facilitating maximum likelihood estimation in this situation for a wide range of parametric models for categorical outcomes—in the cases both of a nominal and an ordinal scale. In particular, the case of probabilistic information about the possible values of the outcome variable is also covered. Two examples motivating this scenario are presented and analyzed.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"158 - 194"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221083902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

In some applications, only a coarsened version of a categorical outcome variable can be observed. Parametric inference based on the maximum likelihood approach is feasible in principle, but it cannot be covered computationally by standard software tools. In this article, we present two commands facilitating maximum likelihood estimation in this situation for a wide range of parametric models for categorical outcomes—in the cases both of a nominal and an ordinal scale. In particular, the case of probabilistic information about the possible values of the outcome variable is also covered. Two examples motivating this scenario are presented and analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析带有或不带有概率信息的粗糙分类数据
在某些应用中,只能观察到分类结果变量的粗化版本。基于最大似然方法的参数推理原则上是可行的,但标准软件工具无法在计算上覆盖它。在这篇文章中,我们提出了两个命令,以便于在这种情况下对分类结果的广泛参数模型进行最大似然估计——在名义量表和序数量表的情况下。特别地,还涵盖了关于结果变量的可能值的概率信息的情况。给出并分析了两个激发这种场景的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
Cluster randomized controlled trial analysis at the cluster level: The clan command. mpitb: A toolbox for multidimensional poverty indices Iterative intercensal single-decrement life tables using Stata Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes hdps: A suite of commands for applying high-dimensional propensity-score approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1