{"title":"A non-asymptotic analysis of adaptive TD(λ) learning in wireless sensor networks","authors":"Bing Li, Tao Li, Muhua Liu, Junlong Zhu, Mingchuan Zhang, Qingtao Wu","doi":"10.1177/15501329221114546","DOIUrl":null,"url":null,"abstract":"Wireless sensor network has been widely used in different fields, such as structural health monitoring and artificial intelligence technology. The routing planning, an important part of wireless sensor network, can be formalized as an optimization problem needing to be solved. In this article, a reinforcement learning algorithm is proposed to solve the problem of optimal routing in wireless sensor networks, namely, adaptive TD( λ ) learning algorithm referred to as ADTD( λ ) under Markovian noise, which is more practical than i.i.d. (identically and independently distributed) noise in reinforcement learning. Moreover, we also present non-asymptotic analysis of ADTD( λ ) with both constant and diminishing step-sizes. Specifically, when the step-size is constant, the convergence rate of O ( 1 / T ) is achieved, where T is the number of iterations; when the step-size is diminishing, the convergence rate of O ~ ( 1 / T ) is also obtained. In addition, the performance of the algorithm is verified by simulation.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221114546","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor network has been widely used in different fields, such as structural health monitoring and artificial intelligence technology. The routing planning, an important part of wireless sensor network, can be formalized as an optimization problem needing to be solved. In this article, a reinforcement learning algorithm is proposed to solve the problem of optimal routing in wireless sensor networks, namely, adaptive TD( λ ) learning algorithm referred to as ADTD( λ ) under Markovian noise, which is more practical than i.i.d. (identically and independently distributed) noise in reinforcement learning. Moreover, we also present non-asymptotic analysis of ADTD( λ ) with both constant and diminishing step-sizes. Specifically, when the step-size is constant, the convergence rate of O ( 1 / T ) is achieved, where T is the number of iterations; when the step-size is diminishing, the convergence rate of O ~ ( 1 / T ) is also obtained. In addition, the performance of the algorithm is verified by simulation.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.