Incompressible versus compressible large eddy simulation for the identification of premixed flame dynamics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-03-01 DOI:10.1177/17568277231154204
Alexander J Eder, Camilo F. Silva, M. Haeringer, J. Kuhlmann, W. Polifke
{"title":"Incompressible versus compressible large eddy simulation for the identification of premixed flame dynamics","authors":"Alexander J Eder, Camilo F. Silva, M. Haeringer, J. Kuhlmann, W. Polifke","doi":"10.1177/17568277231154204","DOIUrl":null,"url":null,"abstract":"The present work compares the respective advantages and disadvantages of compressible and incompressible computational fluid dynamics (CFD) formulations when used for the estimation of the acoustic flame response. The flame transfer function of a turbulent premixed swirl-stabilized burner is determined by applying system identification (SI) to time series data extracted from large eddy simulation (LES). By analyzing the quality of the results, the present study shows that incompressible simulations exhibit several advantages over their compressible counterpart with equal prediction of the flame dynamics. On the one hand, the forcing signals can be designed in such a way that desired statistical properties can be enhanced, while maintaining optimal values in the amplitude. On the other hand, computational costs are reduced and the implementation is fundamentally simpler due to the absence of acoustic wave propagation and corresponding resonances in the flame response or even self-excited acoustic oscillations. Such an increase in efficiency makes the incompressible CFD/SI modeling approach very appealing for the study of a wide variety of systems that rely on premixed combustion. In conclusion, the present study reveals that both methodologies predict the same flame dynamics, which confirms that incompressible simulation can be used for thermoacoustic analyses of acoustically compact velocity-sensitive flames.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277231154204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present work compares the respective advantages and disadvantages of compressible and incompressible computational fluid dynamics (CFD) formulations when used for the estimation of the acoustic flame response. The flame transfer function of a turbulent premixed swirl-stabilized burner is determined by applying system identification (SI) to time series data extracted from large eddy simulation (LES). By analyzing the quality of the results, the present study shows that incompressible simulations exhibit several advantages over their compressible counterpart with equal prediction of the flame dynamics. On the one hand, the forcing signals can be designed in such a way that desired statistical properties can be enhanced, while maintaining optimal values in the amplitude. On the other hand, computational costs are reduced and the implementation is fundamentally simpler due to the absence of acoustic wave propagation and corresponding resonances in the flame response or even self-excited acoustic oscillations. Such an increase in efficiency makes the incompressible CFD/SI modeling approach very appealing for the study of a wide variety of systems that rely on premixed combustion. In conclusion, the present study reveals that both methodologies predict the same flame dynamics, which confirms that incompressible simulation can be used for thermoacoustic analyses of acoustically compact velocity-sensitive flames.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别预混火焰动力学的不可压缩与可压缩大涡模拟
本文比较了可压缩和不可压缩计算流体动力学(CFD)公式用于火焰声响应估计时各自的优缺点。通过对大涡模拟(LES)中提取的时间序列数据进行系统识别,确定了湍流预混旋流稳定燃烧器的火焰传递函数。通过对结果质量的分析,本研究表明,在火焰动力学预测方面,不可压缩模拟比可压缩模拟有几个优势。一方面,强迫信号可以设计成这样一种方式,即可以增强所需的统计特性,同时保持振幅的最佳值。另一方面,由于火焰响应中没有声波传播和相应的共振,甚至没有自激声振荡,因此降低了计算成本,从根本上简化了实现。这种效率的提高使得不可压缩CFD/SI建模方法对各种依赖预混燃烧的系统的研究非常有吸引力。总之,本研究表明,两种方法预测相同的火焰动力学,这证实了不可压缩模拟可以用于声致密速度敏感火焰的热声分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1