Occupational exposure in lead and zinc mines induces oxidative stress in miners lymphocytes: Role of mitochondrial/lysosomal damage

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Main Group Metal Chemistry Pub Date : 2020-01-01 DOI:10.1515/mgmc-2020-0019
Enayatollah Seydi, Mahshid Soltani, M. Ramazani, M. Zarei, J. Pourahmad
{"title":"Occupational exposure in lead and zinc mines induces oxidative stress in miners lymphocytes: Role of mitochondrial/lysosomal damage","authors":"Enayatollah Seydi, Mahshid Soltani, M. Ramazani, M. Zarei, J. Pourahmad","doi":"10.1515/mgmc-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this research was to determine mitochondrial and lysosomal damage and oxidative stress status in blood lymphocytes of lead-zinc miners. This research was performed in 10 mine workers who have been in contact with lead and zinc in comparison to a control group containing 10 healthy volunteers. Lymphocytes were isolated from peripheral blood using the Ficoll standard method and then mitochondrial and lysosomal damage and oxidative stress were evaluated. The level of reactive oxygen species (ROS), collapse in the mitochondrial membrane potential (MMP) collapse, and glutathione disulfide (GSSG) content, and lysosomal damage in miners were higher than the control group. Also, viability and glutathione (GSH) content were decreased. The lymphocytes of workers of a lead-zinc mine are more susceptible to oxidative stress, mitochondrial and lysosomal damage. The proper use of safety equipment can reduce the risk of toxic agents and their subsequent hazards for mine workers.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"43 1","pages":"154 - 163"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2020-0019","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2020-0019","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The purpose of this research was to determine mitochondrial and lysosomal damage and oxidative stress status in blood lymphocytes of lead-zinc miners. This research was performed in 10 mine workers who have been in contact with lead and zinc in comparison to a control group containing 10 healthy volunteers. Lymphocytes were isolated from peripheral blood using the Ficoll standard method and then mitochondrial and lysosomal damage and oxidative stress were evaluated. The level of reactive oxygen species (ROS), collapse in the mitochondrial membrane potential (MMP) collapse, and glutathione disulfide (GSSG) content, and lysosomal damage in miners were higher than the control group. Also, viability and glutathione (GSH) content were decreased. The lymphocytes of workers of a lead-zinc mine are more susceptible to oxidative stress, mitochondrial and lysosomal damage. The proper use of safety equipment can reduce the risk of toxic agents and their subsequent hazards for mine workers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铅和锌矿山的职业暴露诱导矿工淋巴细胞的氧化应激:线粒体/溶酶体损伤的作用
摘要本研究旨在测定铅锌矿矿工血淋巴细胞线粒体和溶酶体的损伤及氧化应激状态。这项研究是在10名接触过铅和锌的矿工中进行的,与包含10名健康志愿者的对照组相比。使用Ficoll标准方法从外周血中分离淋巴细胞,然后评估线粒体和溶酶体损伤以及氧化应激。矿工的活性氧(ROS)水平、线粒体膜电位崩溃(MMP)、谷胱甘肽二硫化物(GSSG)含量以及溶酶体损伤均高于对照组。此外,活力和谷胱甘肽(GSH)含量降低。铅锌矿工人的淋巴细胞更容易受到氧化应激、线粒体和溶酶体损伤。正确使用安全设备可以降低有毒物质的风险及其对矿山工人的后续危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
期刊最新文献
Two new zinc(ii) coordination complexes constructed by phenanthroline derivate: Synthesis and structure Retraction to “Aluminium(iii), Fe(ii) Complexes and Dyeing Properties of Apigenin(5,7,4′-trihydroxy flavone)” Synthesis and crystal structure of an ionic phenyltin(iv) complex of N-salicylidene-valine Lithium fluoroarylsilylamides and their structural features On computation of neighbourhood degree sum-based topological indices for zinc-based metal–organic frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1