A Correlation for Estimating LCPC Abrasivity Coefficient using Rock Properties

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2020-07-01 DOI:10.22044/JME.2020.9520.1863
M. Ansari, M. Hosseini, A. Beydokhti
{"title":"A Correlation for Estimating LCPC Abrasivity Coefficient using Rock Properties","authors":"M. Ansari, M. Hosseini, A. Beydokhti","doi":"10.22044/JME.2020.9520.1863","DOIUrl":null,"url":null,"abstract":"Rock abrasivity, as one of the most important parameters affecting the rock drillability, significantly influences the drilling rate in mines. Therefore, rock abrasivity should be carefully evaluated prior to selecting and employing drilling machines. Since the tests for a rock abrasivity assessment require sophisticated laboratory equipment, empirical models can be used to predict rock abrasivity. Several indices based on five known methods have been introduced for assessing rock abrasivity including rock abrasivity index (RAI), Cerchar abrasivity index (CAI), Schimazek’s abrasivity factor (F-abrasivity), bit wear index (BWI), and LCPC abrasivity coefficient (LAC). In this work, 12 rock types with different origins were investigated using the uniaxial compressive strength (UCS), Brazilian test for tensile strength, and longitudinal wave velocity and LCPC tests, and microscopic observations were made to obtain a correlation for estimating the LCPC abrasivity coefficient by conducting the conventional rock mechanics tests. Using the equivalent quartz content, velocity of longitudinal waves, and rock brittleness index, a linear correlation was obtained with a coefficient of determination (R2) of 93.3% using SPSS in order to estimate LAC.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2020.9520.1863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

Abstract

Rock abrasivity, as one of the most important parameters affecting the rock drillability, significantly influences the drilling rate in mines. Therefore, rock abrasivity should be carefully evaluated prior to selecting and employing drilling machines. Since the tests for a rock abrasivity assessment require sophisticated laboratory equipment, empirical models can be used to predict rock abrasivity. Several indices based on five known methods have been introduced for assessing rock abrasivity including rock abrasivity index (RAI), Cerchar abrasivity index (CAI), Schimazek’s abrasivity factor (F-abrasivity), bit wear index (BWI), and LCPC abrasivity coefficient (LAC). In this work, 12 rock types with different origins were investigated using the uniaxial compressive strength (UCS), Brazilian test for tensile strength, and longitudinal wave velocity and LCPC tests, and microscopic observations were made to obtain a correlation for estimating the LCPC abrasivity coefficient by conducting the conventional rock mechanics tests. Using the equivalent quartz content, velocity of longitudinal waves, and rock brittleness index, a linear correlation was obtained with a coefficient of determination (R2) of 93.3% using SPSS in order to estimate LAC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用岩石性质估算LCPC耐磨系数的相关性
岩石磨蚀性作为影响岩石可钻性的重要参数之一,对矿山的钻速有着重要的影响。因此,在选择和使用钻机之前,应仔细评估岩石的耐磨性。由于岩石耐磨性评估测试需要复杂的实验室设备,因此可以使用经验模型来预测岩石耐磨性。已经引入了基于五种已知方法的几个指标来评估岩石耐磨性,包括岩石耐磨性指数(RAI)、Cerchar耐磨性指标(CAI)、Schimazek耐磨性因子(F-耐磨性)、钻头磨损指数(BWI)和LCPC耐磨性系数(LAC)。在这项工作中,使用单轴抗压强度(UCS)、巴西抗拉强度试验、纵波速度和LCPC试验研究了12种不同来源的岩石类型,并进行了微观观察,以通过进行常规岩石力学试验来获得估算LCPC磨损系数的相关性。使用等效石英含量、纵波速度和岩石脆性指数,使用SPSS获得了确定系数(R2)为93.3%的线性相关性,以估计LAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1