{"title":"Physical modeling of HZO-based ferroelectric field-effect transistors with a WO x channel","authors":"X. Wen, M. Halter, L. Bégon-Lours, M. Luisier","doi":"10.3389/fnano.2022.900592","DOIUrl":null,"url":null,"abstract":"The quasistatic and transient transfer characteristics of Hf0.57Zr0.43O2 (HZO)-based ferroelectric field-effect transistors (FeFETs) with a WO x channel are investigated using a 2-D time-dependent Ginzburg-Landau model as implemented in a state-of-the-art technology computer aided design tool. Starting from an existing FeFET configuration, the influence of different design parameters and geometries is analyzed before providing guidelines for next-generation devices with an increased “high (R H ) to low (R L )” resistance ratio, i.e., R H /R L . The suitability of FeFETs as solid-state synapses in memristive crossbar arrays depends on this parameter. Simulations predict that a 13 times larger R H /R L ratio can be achieved in a double-gate FeFET, as compared to a back-gated one with the same channel geometry and ferroelectric layer. The observed improvement can be attributed to the enhanced electrostatic control over the semiconducting channel thanks to the addition of a second gate. A similar effect is obtained by thinning either the HZO dielectric or the WO x channel. These findings could pave the way for FeFETs with enhanced synaptic-like properties that play a key role in future neuromorphic computing applications.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.900592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The quasistatic and transient transfer characteristics of Hf0.57Zr0.43O2 (HZO)-based ferroelectric field-effect transistors (FeFETs) with a WO x channel are investigated using a 2-D time-dependent Ginzburg-Landau model as implemented in a state-of-the-art technology computer aided design tool. Starting from an existing FeFET configuration, the influence of different design parameters and geometries is analyzed before providing guidelines for next-generation devices with an increased “high (R H ) to low (R L )” resistance ratio, i.e., R H /R L . The suitability of FeFETs as solid-state synapses in memristive crossbar arrays depends on this parameter. Simulations predict that a 13 times larger R H /R L ratio can be achieved in a double-gate FeFET, as compared to a back-gated one with the same channel geometry and ferroelectric layer. The observed improvement can be attributed to the enhanced electrostatic control over the semiconducting channel thanks to the addition of a second gate. A similar effect is obtained by thinning either the HZO dielectric or the WO x channel. These findings could pave the way for FeFETs with enhanced synaptic-like properties that play a key role in future neuromorphic computing applications.