Exploring the Use of Particle and Kalman Filters for Obstacle Detection in Mobile Robots

Z. Gyenes, Ladislau Bölöni, Emese Gincsainé Szádeczky-Kardoss
{"title":"Exploring the Use of Particle and Kalman Filters for Obstacle Detection in Mobile Robots","authors":"Z. Gyenes, Ladislau Bölöni, Emese Gincsainé Szádeczky-Kardoss","doi":"10.3311/ppee.21969","DOIUrl":null,"url":null,"abstract":"The present study aims to explore the adaptation of estimation methodologies, specifically Particle filters and Kalman filters, for the purpose of determining the position and velocity vector of obstacles within the operational workspace of mobile robots. These algorithms are commonly employed in the motion planning tasks of mobile robots for the estimation of their own position. The proposed methodology utilizes LiDAR sensor data to estimate the position vectors and calculate the velocity vectors of obstacles. Additionally, an uncertainty parameter can be determined using the introduced perception method. The performance of the newly adapted algorithms is evaluated through comparison of the absolute error in position and velocity vector estimations.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.21969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aims to explore the adaptation of estimation methodologies, specifically Particle filters and Kalman filters, for the purpose of determining the position and velocity vector of obstacles within the operational workspace of mobile robots. These algorithms are commonly employed in the motion planning tasks of mobile robots for the estimation of their own position. The proposed methodology utilizes LiDAR sensor data to estimate the position vectors and calculate the velocity vectors of obstacles. Additionally, an uncertainty parameter can be determined using the introduced perception method. The performance of the newly adapted algorithms is evaluated through comparison of the absolute error in position and velocity vector estimations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索粒子滤波和卡尔曼滤波在移动机器人障碍物检测中的应用
本研究旨在探索估计方法的适应性,特别是粒子滤波和卡尔曼滤波,以确定移动机器人操作工作空间内障碍物的位置和速度矢量。这些算法通常用于移动机器人的运动规划任务中,用于估计自身的位置。该方法利用激光雷达传感器数据估计障碍物的位置矢量和计算障碍物的速度矢量。此外,利用引入的感知方法可以确定不确定性参数。通过位置矢量估计和速度矢量估计的绝对误差比较,评价了新算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Periodica polytechnica Electrical engineering and computer science
Periodica polytechnica Electrical engineering and computer science Engineering-Electrical and Electronic Engineering
CiteScore
2.60
自引率
0.00%
发文量
36
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).
期刊最新文献
Modeling and Study of Different Magnet Topologies in Rotor of Low Rating IPMSMs Improving Reinforcement Learning Exploration by Autoencoders A Self-adapting Pixel Antenna - Substrate Lens System for Infrared Frequencies Palmprint Identification Using Dolphin Optimization Parasitic Loaded Shorting Pin Based Compact Multi-slot LoRa Antenna for Military Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1