Fine debris flows formed by the Orientale basin

IF 2.9 3区 地球科学 Earth and Planetary Physics Pub Date : 2020-06-08 DOI:10.26464/epp2020027
YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui
{"title":"Fine debris flows formed by the Orientale basin","authors":"YuZhen Cai,&nbsp;ZhiYong Xiao,&nbsp;ChunYu Ding,&nbsp;Jun Cui","doi":"10.26464/epp2020027","DOIUrl":null,"url":null,"abstract":"<p>The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon. Its widespread secondaries, light plains, and near-rim melt flows have been well mapped in previous studies. Flow features are also widely associated with secondaries on planetary bodies, but their physical properties are not well constrained. The nature of flow features associated with large impact basins are critically important to understand the emplacement process of basin ejecta, which is one of the most fundamental processes in shaping the shallow crusts of planetary bodies. Here we use multisource remote sensing data to constrain the physical properties of flow features formed by the secondaries of the Orientale basin. The results suggest that such flows are dominated by centimeter-scale fine debris fines; larger boulders are not abundant. The shattering of target materials during the excavation of the Orientale basin, landing impact of ejecta that formed the secondaries, and grain comminution within the flows have substantially reduced particle sizes, forming the fine flows. The discovery of global-wide fine debris flows formed by large impact basins has profound implications to the interpretation of both previously-returned samples and remote sensing data.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.26464/epp2020027","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2020027","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon. Its widespread secondaries, light plains, and near-rim melt flows have been well mapped in previous studies. Flow features are also widely associated with secondaries on planetary bodies, but their physical properties are not well constrained. The nature of flow features associated with large impact basins are critically important to understand the emplacement process of basin ejecta, which is one of the most fundamental processes in shaping the shallow crusts of planetary bodies. Here we use multisource remote sensing data to constrain the physical properties of flow features formed by the secondaries of the Orientale basin. The results suggest that such flows are dominated by centimeter-scale fine debris fines; larger boulders are not abundant. The shattering of target materials during the excavation of the Orientale basin, landing impact of ejecta that formed the secondaries, and grain comminution within the flows have substantially reduced particle sizes, forming the fine flows. The discovery of global-wide fine debris flows formed by large impact basins has profound implications to the interpretation of both previously-returned samples and remote sensing data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由东方盆地形成的细碎屑流
研究大型撞击盆地对行星体的形成机制和相关地质效应的原型是月球上的Orientale盆地。在以前的研究中,已经很好地绘制了它广泛分布的次级、浅平原和近边缘融化流。流动特征也广泛地与行星体上的次级相关联,但它们的物理性质并没有得到很好的约束。与大型撞击盆地相关的流动特征的性质对于理解盆地喷出物的就位过程至关重要,这是形成行星体浅层地壳的最基本过程之一。本文利用多源遥感数据对东方盆地次生流体形成的流场特征进行了物理性质约束。结果表明,该流以厘米级细粒碎屑为主;更大的巨石并不多。东方河盆地开挖过程中靶材的破碎、抛射物的落地冲击形成二次流、流内颗粒的粉碎使颗粒尺寸大大减小,形成细流。全球范围内由大型撞击盆地形成的细碎屑流的发现对先前返回的样品和遥感数据的解释具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Physics
Earth and Planetary Physics GEOSCIENCES, MULTIDISCIPLINARY-
自引率
17.20%
发文量
174
期刊最新文献
A data assimilation-based forecast model of outer radiation belt electron fluxes Direct evidence for efficient scattering of suprathermal electrons by whistler mode waves in the Martian magnetosphere Scalings for the Alfvén-cyclotron instability in a bi-kappa plasma Mesopause temperatures and relative densities at midlatitudes observed by the Mengcheng meteor radar Large-scale inverted-V channels of upflowing oxygen ions pumped by Alfvén waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1