A new approach based on current controlled hybrid power compensator for power quality improvement using time series neural network

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Automatika Pub Date : 2023-05-24 DOI:10.1080/00051144.2023.2203560
R. D, P. Thirumoorthi, Premalatha K
{"title":"A new approach based on current controlled hybrid power compensator for power quality improvement using time series neural network","authors":"R. D, P. Thirumoorthi, Premalatha K","doi":"10.1080/00051144.2023.2203560","DOIUrl":null,"url":null,"abstract":"In this paper, a current controlled-hybrid power compensator (CC-HPC) is presented to reduce the effect of input current harmonics on battery chargers. Passive filters have significant power loss and degrade system frequency due to excessive harmonic attenuation. The proposed system integrates the Higher Order Sliding Mode Controller (HOSMC) with a generalized form of p–q power theory and a Time Series – Artificial Neural Network (TS-ANN) is used to produce compensating reference current for a three-phase system and generates DC link inductor current. Switching pulses to Current Controlled-Active Power Compensator (CC-APC) switches are generated using a reference compensated signal. The development of CC-HPC and its control approach helps to reduce the overall harmonic distortion of the supply current used in battery chargers are the main contributions of the proposed system. HOSMC is a robust and adaptable controller that tracks reference current without causing chattering is the significant advantage of the proposed method. The control algorithm is designed in MATLAB/SIMULINK software for various load conditions and the experimental setup has been developed for rectified fed RC load using TS-ANN. The filtering process of CC-HPC can maintain the harmonic distortion of supply current within the IEEE 519-2014 standard.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2203560","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a current controlled-hybrid power compensator (CC-HPC) is presented to reduce the effect of input current harmonics on battery chargers. Passive filters have significant power loss and degrade system frequency due to excessive harmonic attenuation. The proposed system integrates the Higher Order Sliding Mode Controller (HOSMC) with a generalized form of p–q power theory and a Time Series – Artificial Neural Network (TS-ANN) is used to produce compensating reference current for a three-phase system and generates DC link inductor current. Switching pulses to Current Controlled-Active Power Compensator (CC-APC) switches are generated using a reference compensated signal. The development of CC-HPC and its control approach helps to reduce the overall harmonic distortion of the supply current used in battery chargers are the main contributions of the proposed system. HOSMC is a robust and adaptable controller that tracks reference current without causing chattering is the significant advantage of the proposed method. The control algorithm is designed in MATLAB/SIMULINK software for various load conditions and the experimental setup has been developed for rectified fed RC load using TS-ANN. The filtering process of CC-HPC can maintain the harmonic distortion of supply current within the IEEE 519-2014 standard.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间序列神经网络的电流控制混合功率补偿器改善电能质量的新方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
期刊最新文献
Robust synchronization of four-dimensional chaotic finance systems with unknown parametric uncertainties Segmenting and classifying skin lesions using a fruit fly optimization algorithm with a machine learning framework An implementation of inertia control strategy for grid-connected solar system using moth-flame optimization algorithm Empowering diagnosis: an astonishing deep transfer learning approach with fine tuning for precise lung disease classification from CXR images A comparative analysis: optimal node selection in large data block transmission in VANET using various node relay optimization algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1