{"title":"God playing dice, revisited: determinism and indeterminism in studies of stochastic phenotypic variation.","authors":"D. Lajus","doi":"10.1042/ETLS20210285","DOIUrl":null,"url":null,"abstract":"Empirical studies of phenotypic variation show that genetic and environmental heterogeneity account for only part of it. Usually, the magnitude of the residual variation is comparable with that of the genetic component, while notably exceeding the magnitude of the environmental component. This can be interpreted in two ways. A deterministic interpretation associates it with artifacts such as measurement error and genetic and environmental heterogeneity that is unaccounted for. An indeterministic interpretation argues that it is random or stochastic phenotypic variation (SPV) resulting from developmental instability - a developing organism's inability to produce a consistent phenotype in a given environment. Classical example of debates between determinists and indeterminists took place about a century ago in quantum physics. In discussing Heidelberg's Uncertainty Principle, Einstein metaphorically expressed his deterministic position: 'God does not play dice with universe'. The indeterministic Uncertainty Principle, however, was eventually widely accepted. Currently, most biologists implicitly or explicitly support deterministic interpretations of phenotypic variation patterns. Here, a wide range of data on morphological traits (studied with analysis of fluctuating asymmetry) and non-morphological traits are analyzed to provide evidence that SPV is not an artifact, but a valid phenomenon. This evidence supports conclusions that observed associations between SPV and stress can be analyzed in the framework of dynamic energy budget theory, and are inextricably linked through energy homeostasis.","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20210285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Empirical studies of phenotypic variation show that genetic and environmental heterogeneity account for only part of it. Usually, the magnitude of the residual variation is comparable with that of the genetic component, while notably exceeding the magnitude of the environmental component. This can be interpreted in two ways. A deterministic interpretation associates it with artifacts such as measurement error and genetic and environmental heterogeneity that is unaccounted for. An indeterministic interpretation argues that it is random or stochastic phenotypic variation (SPV) resulting from developmental instability - a developing organism's inability to produce a consistent phenotype in a given environment. Classical example of debates between determinists and indeterminists took place about a century ago in quantum physics. In discussing Heidelberg's Uncertainty Principle, Einstein metaphorically expressed his deterministic position: 'God does not play dice with universe'. The indeterministic Uncertainty Principle, however, was eventually widely accepted. Currently, most biologists implicitly or explicitly support deterministic interpretations of phenotypic variation patterns. Here, a wide range of data on morphological traits (studied with analysis of fluctuating asymmetry) and non-morphological traits are analyzed to provide evidence that SPV is not an artifact, but a valid phenomenon. This evidence supports conclusions that observed associations between SPV and stress can be analyzed in the framework of dynamic energy budget theory, and are inextricably linked through energy homeostasis.