T. Loskutova, I. Pogrebova, Ya.А. Kononenko, S. Kotlyar
{"title":"Influence of activator on the structure and properties of chromium-alloyed titanium alloy VT6","authors":"T. Loskutova, I. Pogrebova, Ya.А. Kononenko, S. Kotlyar","doi":"10.15407/mom2022.02.052","DOIUrl":null,"url":null,"abstract":"The influence of the amount of halogen-containing activator on the structure, composition and properties of diffusion layers, which are formed during the complex saturation of the titanium alloy VT6 with chromium and aluminum, is investigated. The coating was applied by powder method in chlorine under reduced pressure, at a temperature of 850 ° C for 4 hours in a saturating mixture consisting of powders of saturating metals (chromium, aluminum), inert backfill Al2O3 and activator. As the activator used NH4Cl, the amount of which varied in the range from 3 to 9 % of the mass. The optimal amount of activator in the saturating mixture is determined. The microstructure, chemical composition, thickness and microhardness of the obtained diffusion coatings were studied. It was found that when using 3% NH4Cl, the obtained coatings consist of three layers, dark gray, which are completely located on the surface and correspond to the phases based on TiAl, intermetallic with (Ti, V, Cr, Al) and Ti3Al. A transition zone based on α-Ti is formed directly under the coating. The microhardness of the obtained layers is quite high and is 5.1-9.6 GPa, the total thickness is 46.0-48.0 μm. Reducing the amount of activator leads to the formation of discontinuous surface layers of the coating, which will lead to differences in the properties of its surface layers. Increase - to the destruction of the surface layers of the coating and equipment directly during the chemical-thermal treatment. Keywords: chromium, aluminum, titanium alloy, activator, diffusion coatings.","PeriodicalId":33600,"journal":{"name":"Metaloznavstvo ta obrobka metaliv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metaliv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2022.02.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of the amount of halogen-containing activator on the structure, composition and properties of diffusion layers, which are formed during the complex saturation of the titanium alloy VT6 with chromium and aluminum, is investigated. The coating was applied by powder method in chlorine under reduced pressure, at a temperature of 850 ° C for 4 hours in a saturating mixture consisting of powders of saturating metals (chromium, aluminum), inert backfill Al2O3 and activator. As the activator used NH4Cl, the amount of which varied in the range from 3 to 9 % of the mass. The optimal amount of activator in the saturating mixture is determined. The microstructure, chemical composition, thickness and microhardness of the obtained diffusion coatings were studied. It was found that when using 3% NH4Cl, the obtained coatings consist of three layers, dark gray, which are completely located on the surface and correspond to the phases based on TiAl, intermetallic with (Ti, V, Cr, Al) and Ti3Al. A transition zone based on α-Ti is formed directly under the coating. The microhardness of the obtained layers is quite high and is 5.1-9.6 GPa, the total thickness is 46.0-48.0 μm. Reducing the amount of activator leads to the formation of discontinuous surface layers of the coating, which will lead to differences in the properties of its surface layers. Increase - to the destruction of the surface layers of the coating and equipment directly during the chemical-thermal treatment. Keywords: chromium, aluminum, titanium alloy, activator, diffusion coatings.