Development of Cavity Matrix Combustor for Biogas Application

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2022-12-29 DOI:10.22146/ajche.76154
Y. Chun, June An
{"title":"Development of Cavity Matrix Combustor for Biogas Application","authors":"Y. Chun, June An","doi":"10.22146/ajche.76154","DOIUrl":null,"url":null,"abstract":"The use of conventional fossil fuels has limitations in energy resources and environmental problems such as greenhouse gas, air pollution, etc. Biogas has sustainable and renewable characteristics that can be used as an alternative energy source to alleviate these problems. In this study, we proposed a novel cavity matrix combustor that directly enables the combustion of what is produced in small and medium-sized biogas facilities without separation or purification. We also identified combustion characteristics for changes in air ratio, gas feed rate, biogas ratio, and exhaust gas recirculation rate and proposed optimal operating conditions based on this. The performance test result showed that the cavity matrix combustor is excellent for biogas combustion. The optimal operating conditions for the combustor are: the biogas ratio is 60% of CH4 and 40% of CO2, the air ratio is 1.1, the gas feed rate is 30L/min, and the exhaust gas recirculation rate is 100%. At this time, the combustion efficiency was 87%, and the unburned components were CO, UHCs, which are 0.01% and 0.05%, respectively, and NOx was 1ppm.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.76154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The use of conventional fossil fuels has limitations in energy resources and environmental problems such as greenhouse gas, air pollution, etc. Biogas has sustainable and renewable characteristics that can be used as an alternative energy source to alleviate these problems. In this study, we proposed a novel cavity matrix combustor that directly enables the combustion of what is produced in small and medium-sized biogas facilities without separation or purification. We also identified combustion characteristics for changes in air ratio, gas feed rate, biogas ratio, and exhaust gas recirculation rate and proposed optimal operating conditions based on this. The performance test result showed that the cavity matrix combustor is excellent for biogas combustion. The optimal operating conditions for the combustor are: the biogas ratio is 60% of CH4 and 40% of CO2, the air ratio is 1.1, the gas feed rate is 30L/min, and the exhaust gas recirculation rate is 100%. At this time, the combustion efficiency was 87%, and the unburned components were CO, UHCs, which are 0.01% and 0.05%, respectively, and NOx was 1ppm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沼气用空腔矩阵燃烧器的研制
传统化石燃料的使用在能源资源上存在局限性,同时也存在温室气体、空气污染等环境问题。沼气具有可持续和可再生的特点,可以作为替代能源来缓解这些问题。在这项研究中,我们提出了一种新型的空腔矩阵燃烧器,可以直接燃烧中小型沼气设施中产生的气体,而无需分离或净化。我们还确定了空气比、进气率、沼气比和废气再循环率变化的燃烧特性,并在此基础上提出了最佳运行条件。性能测试结果表明,该腔型燃烧器具有良好的沼气燃烧性能。燃烧室的最佳运行条件为:沼气比为CH4 60%、CO2 40%,空气比为1.1,进气速率为30L/min,废气再循环率为100%。此时燃烧效率为87%,未燃烧组分为CO、uhc,分别为0.01%和0.05%,NOx为1ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1