{"title":"Smart Grid Stability Prediction with Machine Learning","authors":"Gilliaert Daniel","doi":"10.37394/232016.2022.17.30","DOIUrl":null,"url":null,"abstract":"Smart grids refer to a grid system for electricity transmission, which allows the efficient use of electricity without affecting the environment. The stability estimation of this type of network is very important since the whole process is time-dependent. This paper aimed to identify the optimal machine learning technique to predict the stability of these networks. A free database of 60,000 observations with information from consumers and producers on 12 predictive characteristics (Reaction times, Power balances, and Price-Gamma elasticity coefficients) and an independent variable (Stable / Unstable) was used. This paper concludes that the Random Forests technique obtained the best performance, this information can help smart grid managers to make more accurate predictions so that they can implement strategies in time and avoid collapse or disruption of power supply.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2022.17.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Smart grids refer to a grid system for electricity transmission, which allows the efficient use of electricity without affecting the environment. The stability estimation of this type of network is very important since the whole process is time-dependent. This paper aimed to identify the optimal machine learning technique to predict the stability of these networks. A free database of 60,000 observations with information from consumers and producers on 12 predictive characteristics (Reaction times, Power balances, and Price-Gamma elasticity coefficients) and an independent variable (Stable / Unstable) was used. This paper concludes that the Random Forests technique obtained the best performance, this information can help smart grid managers to make more accurate predictions so that they can implement strategies in time and avoid collapse or disruption of power supply.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.