Molecular Characterization of the Cytochrome P450 Epoxidase (CYP15) in the Swimming Crab Portunus trituberculatus and Its Putative Roles in Methyl Farnesoate Metabolism
Shisheng Tu, Ping Tuo, Dongjie Xu, Zhenya Wang, Mengen Wang, Xi Xie, Dongfa Zhu
{"title":"Molecular Characterization of the Cytochrome P450 Epoxidase (CYP15) in the Swimming Crab Portunus trituberculatus and Its Putative Roles in Methyl Farnesoate Metabolism","authors":"Shisheng Tu, Ping Tuo, Dongjie Xu, Zhenya Wang, Mengen Wang, Xi Xie, Dongfa Zhu","doi":"10.1086/719047","DOIUrl":null,"url":null,"abstract":"CYP15, which encodes a microsomal cytochrome P450 enzyme, could be involved in juvenile hormone biosynthesis in insects. In this study, a full-length cDNA of CYP15 was cloned from the swimming crab Portunus trituberculatus. This PtCYP15 amino acid sequence contains six conserved domains, which is a typical feature of the cytochrome P450 family. Phylogenetic tree analysis results showed that PtCYP15 clusters in a single branch of crustacean species, suggesting that CYP15 may be more widely present in crustaceans. The PtCYP15 mRNA has a broad pattern of tissue expression in P. trituberculatus, including high levels of expression in the hepatopancreas of both sexes and in the ovary of female crabs. During ovarian development stages, PtCYP15 mRNA is highly expressed in stages I and II and less so in stages III and IV in the hepatopancreas and the ovary of the female crabs. These expression profiles are opposite those of methyl farnesoate in hemolymph, suggesting that PtCYP15 might be involved in methyl farnesoate metabolism. In vitro studies show that only methyl farnesoate upregulated vitellogenin expression in the hepatopancreas, suggesting that methyl farnesoate might be the equivalent of juvenile hormone III in crustaceans. Methyl farnesoate treatment increased levels of PtCYP15 in explants of the hepatopancreas and ovary, while juvenile hormone III treatment reduced levels of PtCYP15 mRNA in ovary explants, suggesting that PtCYP15 might be involved in degrading methyl farnesoate. Furthermore, PtCYP15 mRNA expression levels were inhibited by adding juvenile hormone III to ovary explants. These findings provide foundational information for future research on methyl farnesoate metabolism in crustaceans.","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"242 1","pages":"75 - 86"},"PeriodicalIF":2.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/719047","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
CYP15, which encodes a microsomal cytochrome P450 enzyme, could be involved in juvenile hormone biosynthesis in insects. In this study, a full-length cDNA of CYP15 was cloned from the swimming crab Portunus trituberculatus. This PtCYP15 amino acid sequence contains six conserved domains, which is a typical feature of the cytochrome P450 family. Phylogenetic tree analysis results showed that PtCYP15 clusters in a single branch of crustacean species, suggesting that CYP15 may be more widely present in crustaceans. The PtCYP15 mRNA has a broad pattern of tissue expression in P. trituberculatus, including high levels of expression in the hepatopancreas of both sexes and in the ovary of female crabs. During ovarian development stages, PtCYP15 mRNA is highly expressed in stages I and II and less so in stages III and IV in the hepatopancreas and the ovary of the female crabs. These expression profiles are opposite those of methyl farnesoate in hemolymph, suggesting that PtCYP15 might be involved in methyl farnesoate metabolism. In vitro studies show that only methyl farnesoate upregulated vitellogenin expression in the hepatopancreas, suggesting that methyl farnesoate might be the equivalent of juvenile hormone III in crustaceans. Methyl farnesoate treatment increased levels of PtCYP15 in explants of the hepatopancreas and ovary, while juvenile hormone III treatment reduced levels of PtCYP15 mRNA in ovary explants, suggesting that PtCYP15 might be involved in degrading methyl farnesoate. Furthermore, PtCYP15 mRNA expression levels were inhibited by adding juvenile hormone III to ovary explants. These findings provide foundational information for future research on methyl farnesoate metabolism in crustaceans.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.