A Comparison of Modern and Popular Approaches to Calculating Reliability for Dichotomously Scored Items.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2022-06-01 Epub Date: 2022-04-14 DOI:10.1177/01466216221084210
Sébastien Béland, Carl F Falk
{"title":"A Comparison of Modern and Popular Approaches to Calculating Reliability for Dichotomously Scored Items.","authors":"Sébastien Béland, Carl F Falk","doi":"10.1177/01466216221084210","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work on reliability coefficients has largely focused on continuous items, including critiques of Cronbach's alpha. Although two new model-based reliability coefficients have been proposed for dichotomous items (Dimitrov, 2003a,b; Green & Yang, 2009a), these approaches have yet to be compared to each other or other popular estimates of reliability such as omega, alpha, and the greatest lower bound. We seek computational improvements to one of these model-based reliability coefficients and, in addition, conduct initial Monte Carlo simulations to compare coefficients using dichotomous data. Our results suggest that such improvements to the model-based approach are warranted, while model-based approaches were generally superior.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221084210","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work on reliability coefficients has largely focused on continuous items, including critiques of Cronbach's alpha. Although two new model-based reliability coefficients have been proposed for dichotomous items (Dimitrov, 2003a,b; Green & Yang, 2009a), these approaches have yet to be compared to each other or other popular estimates of reliability such as omega, alpha, and the greatest lower bound. We seek computational improvements to one of these model-based reliability coefficients and, in addition, conduct initial Monte Carlo simulations to compare coefficients using dichotomous data. Our results suggest that such improvements to the model-based approach are warranted, while model-based approaches were generally superior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代与流行的二分计分项目信度计算方法之比较
最近对可靠性系数的研究主要集中在连续项目上,包括对Cronbach 's alpha的批评。虽然两个新的基于模型的可靠性系数已经提出了二分类项目(Dimitrov, 2003a,b;Green & Yang, 2009a),这些方法还没有相互比较或与其他流行的可靠性估计(如ω, alpha和最大下界)进行比较。我们寻求对这些基于模型的可靠性系数之一的计算改进,此外,还进行了初始蒙特卡罗模拟,以使用二分类数据比较系数。我们的结果表明,这种基于模型的方法的改进是必要的,而基于模型的方法通常是优越的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1