{"title":"The numerics of phase retrieval","authors":"A. Fannjiang, T. Strohmer","doi":"10.1017/S0962492920000069","DOIUrl":null,"url":null,"abstract":"Phase retrieval, i.e. the problem of recovering a function from the squared magnitude of its Fourier transform, arises in many applications, such as X-ray crystallography, diffraction imaging, optics, quantum mechanics and astronomy. This problem has confounded engineers, physicists, and mathematicians for many decades. Recently, phase retrieval has seen a resurgence in research activity, ignited by new imaging modalities and novel mathematical concepts. As our scientific experiments produce larger and larger datasets and we aim for faster and faster throughput, it is becoming increasingly important to study the involved numerical algorithms in a systematic and principled manner. Indeed, the past decade has witnessed a surge in the systematic study of computational algorithms for phase retrieval. In this paper we will review these recent advances from a numerical viewpoint.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"29 1","pages":"125 - 228"},"PeriodicalIF":16.3000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0962492920000069","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492920000069","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 66
Abstract
Phase retrieval, i.e. the problem of recovering a function from the squared magnitude of its Fourier transform, arises in many applications, such as X-ray crystallography, diffraction imaging, optics, quantum mechanics and astronomy. This problem has confounded engineers, physicists, and mathematicians for many decades. Recently, phase retrieval has seen a resurgence in research activity, ignited by new imaging modalities and novel mathematical concepts. As our scientific experiments produce larger and larger datasets and we aim for faster and faster throughput, it is becoming increasingly important to study the involved numerical algorithms in a systematic and principled manner. Indeed, the past decade has witnessed a surge in the systematic study of computational algorithms for phase retrieval. In this paper we will review these recent advances from a numerical viewpoint.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.