Improving Multiclass Classification of Fake News Using BERT-Based Models and ChatGPT-Augmented Data

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY Inventions Pub Date : 2023-09-01 DOI:10.3390/inventions8050112
Elena Shushkevich, Mikhail Alexandrov, J. Cardiff
{"title":"Improving Multiclass Classification of Fake News Using BERT-Based Models and ChatGPT-Augmented Data","authors":"Elena Shushkevich, Mikhail Alexandrov, J. Cardiff","doi":"10.3390/inventions8050112","DOIUrl":null,"url":null,"abstract":"Given the widespread accessibility of content creation and sharing, false information proliferation is a growing concern. Researchers typically tackle fake news detection (FND) in specific topics using binary classification. Our study addresses a more practical FND scenario, analyzing a corpus with unknown topics through multiclass classification, encompassing true, false, partially false, and other categories. Our contribution involves: (1) exploring three BERT-based models—SBERT, RoBERTa, and mBERT; (2) enhancing results via ChatGPT-generated artificial data for class balance; and (3) improving outcomes using a two-step binary classification procedure. Our focus is on the CheckThat! Lab dataset from CLEF-2022. Our experimental results demonstrate a superior performance compared to existing achievements but FND’s practical use needs improvement within the current state-of-the-art.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions8050112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Given the widespread accessibility of content creation and sharing, false information proliferation is a growing concern. Researchers typically tackle fake news detection (FND) in specific topics using binary classification. Our study addresses a more practical FND scenario, analyzing a corpus with unknown topics through multiclass classification, encompassing true, false, partially false, and other categories. Our contribution involves: (1) exploring three BERT-based models—SBERT, RoBERTa, and mBERT; (2) enhancing results via ChatGPT-generated artificial data for class balance; and (3) improving outcomes using a two-step binary classification procedure. Our focus is on the CheckThat! Lab dataset from CLEF-2022. Our experimental results demonstrate a superior performance compared to existing achievements but FND’s practical use needs improvement within the current state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于bert模型和chatgpt增强数据的假新闻多类分类改进
鉴于内容创建和共享的广泛可访问性,虚假信息的扩散越来越令人担忧。研究人员通常使用二元分类来处理特定主题中的假新闻检测(FND)。我们的研究涉及一个更实用的FND场景,通过多类别分类分析具有未知主题的语料库,包括真、假、部分假和其他类别。我们的贡献包括:(1)探索了三种基于BERT的模型——SBERT、RoBERTa和mBERT;(2) 通过ChatGPT生成的用于阶级平衡的人工数据来增强结果;以及(3)使用两步二进制分类程序来改善结果。我们的重点是CheckThat!CLEF-2022的实验室数据集。我们的实验结果表明,与现有成果相比,FND具有优越的性能,但在当前最先进的技术范围内,FND的实际应用需要改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
期刊最新文献
Enhancing Smart Agriculture Monitoring via Connectivity Management Scheme and Dynamic Clustering Strategy Computer Vision Algorithm for Characterization of a Turbulent Gas–Liquid Jet A Modified Xception Deep Learning Model for Automatic Sorting of Olives Based on Ripening Stages Automatic Control and System Theory and Advanced Applications—Volume 2 Large-Scale BESS for Damping Frequency Oscillations of Power Systems with High Wind Power Penetration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1