{"title":"Adaptive fuzzy sensor failure compensation for active suspension systems with multiple sensor failures","authors":"Yixian Fang, Rui Bai","doi":"10.1080/21642583.2021.1969700","DOIUrl":null,"url":null,"abstract":"This paper has studied the adaptive fuzzy fault-tolerant control (FTC) for active suspension systems via the sensor failure compensation method. In the control design, fuzzy logic systems (FLSs) are used to identify the unknown nonlinear dynamics, and the projection technique is utilized to deal with the multiple sensor failures. Combining with the backstepping technique, a novel FTC method has been developed. The proposed control method can guarantee that all the signals in the closed-loop system are all bounded, and the tracking error can converge to the neighbourhood of the origin. Finally, a simulation for the quarter active suspension system is given to verify the effectiveness of the developed control scheme.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2021.1969700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper has studied the adaptive fuzzy fault-tolerant control (FTC) for active suspension systems via the sensor failure compensation method. In the control design, fuzzy logic systems (FLSs) are used to identify the unknown nonlinear dynamics, and the projection technique is utilized to deal with the multiple sensor failures. Combining with the backstepping technique, a novel FTC method has been developed. The proposed control method can guarantee that all the signals in the closed-loop system are all bounded, and the tracking error can converge to the neighbourhood of the origin. Finally, a simulation for the quarter active suspension system is given to verify the effectiveness of the developed control scheme.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory