{"title":"Freedom of Information and Personal Confidentiality in Spatial COVID-19 Data","authors":"M. Beenstock, D. Felsenstein","doi":"10.2478/jos-2021-0035","DOIUrl":null,"url":null,"abstract":"Abstract We draw attention to how, in the name of protecting the confidentiality of personal data, national statistical agencies have limited public access to spatial data on COVID-19. We also draw attention to large disparities in the way that access has been limited. In doing so, we distinguish between absolute confidentiality in which the probability of detection is 1, relative confidentiality where this probability is less than 1, and collective confidentiality, which refers to the probability of detection of at least one person. In spatial data, the probability of personal detection is less than 1, and the probability of collective detection varies directly with this probability and COVID-19 morbidity. Statistical agencies have been concerned with relative and collective confidentiality, which they implement using the techniques of truncation, where spatial data are not made public for zones with small populations, and censoring, where exact data are not made public for zones where morbidity is small. Granular spatial data are essential for epidemiological research into COVID-19. We argue that in their reluctance to make these data available to the public, data security officers (DSO) have unreasonably prioritized data protection over freedom of information. We also argue that by attaching importance to relative and collective confidentiality, they have over-indulged in data truncation and censoring. We highlight the need for legislation concerning relative and collective confidentiality, and regulation of DSO practices regarding data truncation and censoring.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"37 1","pages":"791 - 809"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2021-0035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We draw attention to how, in the name of protecting the confidentiality of personal data, national statistical agencies have limited public access to spatial data on COVID-19. We also draw attention to large disparities in the way that access has been limited. In doing so, we distinguish between absolute confidentiality in which the probability of detection is 1, relative confidentiality where this probability is less than 1, and collective confidentiality, which refers to the probability of detection of at least one person. In spatial data, the probability of personal detection is less than 1, and the probability of collective detection varies directly with this probability and COVID-19 morbidity. Statistical agencies have been concerned with relative and collective confidentiality, which they implement using the techniques of truncation, where spatial data are not made public for zones with small populations, and censoring, where exact data are not made public for zones where morbidity is small. Granular spatial data are essential for epidemiological research into COVID-19. We argue that in their reluctance to make these data available to the public, data security officers (DSO) have unreasonably prioritized data protection over freedom of information. We also argue that by attaching importance to relative and collective confidentiality, they have over-indulged in data truncation and censoring. We highlight the need for legislation concerning relative and collective confidentiality, and regulation of DSO practices regarding data truncation and censoring.
期刊介绍:
JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.