Jason R. Carmignani, A. Roy, J. T. Stolarski, T. Richards
{"title":"Hydrology of annual winter water level drawdown regimes in recreational lakes of Massachusetts, United States","authors":"Jason R. Carmignani, A. Roy, J. T. Stolarski, T. Richards","doi":"10.1080/10402381.2021.1927268","DOIUrl":null,"url":null,"abstract":"Abstract Carmignani JR, Roy AH, Stolarski JT, Richards T. 2021. Hydrology of annual winter water level drawdown regimes in recreational lakes of Massachusetts, United States. Lake Reserv Manage. 37:339–359. Annual winter water level drawdown (WD) is a common lake management strategy to maintain recreational value by controlling nuisance macrophytes and preventing ice damage to shoreline infrastructure in lakes of the northeastern United States. The state of Massachusetts provides general guidelines for lake managers to implement and practice WDs. However, WD management reporting is not required and as such empirical water level records are scarce, making it difficult to assess guideline adherence and link these management actions to littoral habitat conditions. We monitored water levels bihourly in 18 lakes with ongoing WD regimes and 3 non-drawdown lakes over 3–4 yr. Our results show an interlake drawdown magnitude gradient of 0.07–2.66 m with intralake consistency across years. Corresponding WD magnitudes generated exposure of 1.3–37.6% for entire lakebeds and 9.2–71.1% for littoral zones. WD durations averaged 171 d and ranged widely from 5 to 246 d. Longer recession and refill phase durations and faster recession rates were moderately to strongly correlated with drawdown magnitudes. WDs were predominantly initiated prior to the state of Massachusetts 1 November starting guideline (83.1%) and refilled to summer reference levels after the recommended date of 1 April (70.6%). To minimize ecological impacts while still meeting recreational goals, WD performance guidelines may require a more fine-scale approach that integrates local hydrogeomorphic features and the presence of WD-sensitive littoral biotic assemblages. However, climate change model projections of warmer and wetter winters in the Northeast indicate increasing uncertainty for WD as an effective and worthwhile macrophyte control tool.","PeriodicalId":18017,"journal":{"name":"Lake and Reservoir Management","volume":"37 1","pages":"339 - 359"},"PeriodicalIF":1.1000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10402381.2021.1927268","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lake and Reservoir Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2021.1927268","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Carmignani JR, Roy AH, Stolarski JT, Richards T. 2021. Hydrology of annual winter water level drawdown regimes in recreational lakes of Massachusetts, United States. Lake Reserv Manage. 37:339–359. Annual winter water level drawdown (WD) is a common lake management strategy to maintain recreational value by controlling nuisance macrophytes and preventing ice damage to shoreline infrastructure in lakes of the northeastern United States. The state of Massachusetts provides general guidelines for lake managers to implement and practice WDs. However, WD management reporting is not required and as such empirical water level records are scarce, making it difficult to assess guideline adherence and link these management actions to littoral habitat conditions. We monitored water levels bihourly in 18 lakes with ongoing WD regimes and 3 non-drawdown lakes over 3–4 yr. Our results show an interlake drawdown magnitude gradient of 0.07–2.66 m with intralake consistency across years. Corresponding WD magnitudes generated exposure of 1.3–37.6% for entire lakebeds and 9.2–71.1% for littoral zones. WD durations averaged 171 d and ranged widely from 5 to 246 d. Longer recession and refill phase durations and faster recession rates were moderately to strongly correlated with drawdown magnitudes. WDs were predominantly initiated prior to the state of Massachusetts 1 November starting guideline (83.1%) and refilled to summer reference levels after the recommended date of 1 April (70.6%). To minimize ecological impacts while still meeting recreational goals, WD performance guidelines may require a more fine-scale approach that integrates local hydrogeomorphic features and the presence of WD-sensitive littoral biotic assemblages. However, climate change model projections of warmer and wetter winters in the Northeast indicate increasing uncertainty for WD as an effective and worthwhile macrophyte control tool.
期刊介绍:
Lake and Reservoir Management (LRM) publishes original, previously unpublished studies relevant to lake and reservoir management. Papers address the management of lakes and reservoirs, their watersheds and tributaries, along with the limnology and ecology needed for sound management of these systems. Case studies that advance the science of lake management or confirm important management concepts are appropriate as long as there is clearly described management significance. Papers on economic, social, regulatory and policy aspects of lake management are also welcome with appropriate supporting data and management implications. Literature syntheses and papers developing a conceptual foundation of lake and watershed ecology will be considered for publication, but there needs to be clear emphasis on management implications. Modeling papers will be considered where the model is properly verified but it is also highly preferable that management based on the model has been taken and results have been documented. Application of known models to yet another system without a clear advance in resultant management are unlikely to be accepted. Shorter notes that convey important early results of long-term studies or provide data relating to causative agents or management approaches that warrant further study are acceptable even if the story is not yet complete. All submissions are subject to peer review to assure relevance and reliability for management application.