{"title":"Lorenz Interpolation: A Method for Estimating Income Inequality from Grouped Income Data","authors":"Andrew Carr","doi":"10.1177/00811750221085586","DOIUrl":null,"url":null,"abstract":"To understand how income inequality affects individuals and communities, researchers must have accurate measures of income inequality at lower geographic levels, such as counties, school districts, and census tracts. Studies of income inequality, however, are constrained by the tabular format in which censuses publish income data. In this article, the author proposes a new method, Lorenz interpolation, for estimating income inequality from binned income data. Using public microsample data from the American Community Survey (ACS), the author shows that Lorenz interpolation produces more accurate and reliable income inequality estimates than do alternative estimation methods. Then, using restricted ACS income data obtained through a Federal Statistical Research Data Center, the author evaluates the accuracy of Lorenz interpolation at the census tract and school district levels. Lorenz interpolation produces reliable school district–level estimates, but the method produces less reliable estimates for some income inequality measures at the tract level. These findings indicate that researchers should refrain from estimating tract-level income inequality measures from tabular data. They also show that aggregating tract income distributions to higher geographic levels can produce valid estimates of income inequality.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"52 1","pages":"141 - 161"},"PeriodicalIF":2.4000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00811750221085586","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To understand how income inequality affects individuals and communities, researchers must have accurate measures of income inequality at lower geographic levels, such as counties, school districts, and census tracts. Studies of income inequality, however, are constrained by the tabular format in which censuses publish income data. In this article, the author proposes a new method, Lorenz interpolation, for estimating income inequality from binned income data. Using public microsample data from the American Community Survey (ACS), the author shows that Lorenz interpolation produces more accurate and reliable income inequality estimates than do alternative estimation methods. Then, using restricted ACS income data obtained through a Federal Statistical Research Data Center, the author evaluates the accuracy of Lorenz interpolation at the census tract and school district levels. Lorenz interpolation produces reliable school district–level estimates, but the method produces less reliable estimates for some income inequality measures at the tract level. These findings indicate that researchers should refrain from estimating tract-level income inequality measures from tabular data. They also show that aggregating tract income distributions to higher geographic levels can produce valid estimates of income inequality.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.