An Evaluation of Pixel-based and Object-based Classification Methods for Land Use Land Cover Analysis Using Geoinformatic Techniques

Sudhir K. Powar, S. Panhalkar, Abhijit S. Patil
{"title":"An Evaluation of Pixel-based and Object-based Classification Methods for Land Use Land Cover Analysis Using Geoinformatic Techniques","authors":"Sudhir K. Powar, S. Panhalkar, Abhijit S. Patil","doi":"10.7494/geom.2022.16.2.61","DOIUrl":null,"url":null,"abstract":"Land use land cover (LULC) classification is a valuable asset for resource managers; in many fields of study, it has become essential to monitor LULC at different scales. As a result, the primary goal of this work is to compare and contrast the performance of pixel-based and object-based categorization algorithms. The supervised maximum likelihood classifier (MLC) technique was employed in pixel-based classification, while multi-resolution segmentation and the standard nearest neighbor (SNN) algorithm were employed in object-based classification. For the urban and suburban parts of Kolhapur, the Resourcesat-2 LISS-IV image was used, and the entire research region was classified into five LULC groups. The performance of the two approaches was examined by comparing the classification results. For accuracy evaluation, the ground truth data was used, and confusion matrixes were generated. The overall accuracy of the object-based methodology was 84.66%, which was significantly greater than the overall accuracy of the pixel-based categorization methodology, which was 72.66%. The findings of this study show that object-based classification is more appropriate for high-resolution Resourcesat-2 satellite data than MLC of pixel-based classification.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/geom.2022.16.2.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Land use land cover (LULC) classification is a valuable asset for resource managers; in many fields of study, it has become essential to monitor LULC at different scales. As a result, the primary goal of this work is to compare and contrast the performance of pixel-based and object-based categorization algorithms. The supervised maximum likelihood classifier (MLC) technique was employed in pixel-based classification, while multi-resolution segmentation and the standard nearest neighbor (SNN) algorithm were employed in object-based classification. For the urban and suburban parts of Kolhapur, the Resourcesat-2 LISS-IV image was used, and the entire research region was classified into five LULC groups. The performance of the two approaches was examined by comparing the classification results. For accuracy evaluation, the ground truth data was used, and confusion matrixes were generated. The overall accuracy of the object-based methodology was 84.66%, which was significantly greater than the overall accuracy of the pixel-based categorization methodology, which was 72.66%. The findings of this study show that object-based classification is more appropriate for high-resolution Resourcesat-2 satellite data than MLC of pixel-based classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地信息技术的土地利用和土地覆盖分类方法的评价
土地利用-土地覆被分类是资源管理者的宝贵财富;在许多研究领域中,对不同尺度下的LULC进行监测是必不可少的。因此,这项工作的主要目标是比较和对比基于像素和基于对象的分类算法的性能。基于像素的分类采用监督最大似然分类器(MLC)技术,基于目标的分类采用多分辨率分割和标准最近邻(SNN)算法。对于Kolhapur的城市和郊区,使用Resourcesat-2 LISS-IV图像,并将整个研究区域划分为5个LULC组。通过对分类结果的比较,检验了两种方法的性能。为了评估精度,使用了地面真实数据,并生成了混淆矩阵。基于对象的分类方法的总体准确率为84.66%,显著高于基于像素的分类方法的总体准确率72.66%。本研究结果表明,基于目标的分类比基于像元的MLC分类更适合于高分辨率Resourcesat-2卫星数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomatics and Environmental Engineering
Geomatics and Environmental Engineering Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
2.30
自引率
0.00%
发文量
27
期刊最新文献
Improving Traffic-noise-mitigation Strategies with LiDAR-based 3D Tree-canopy Analysis Apartment Rental Market in Border Cities of Poland and Ukraine Comparison of Statistical and Machine-Learning Model for Analyzing Landslide Susceptibility in Sumedang Area, Indonesia Sustainability Analysis of Domestic Raw Water Supply in Bandung City of Indonesia Estimation of Natural Uranium and Its Risk-Assessment in Groundwater of Bangalore Urban District of Karnataka, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1