{"title":"An analytical solution for contaminant extraction using PVD-enhanced system arranged in a rectangular pattern","authors":"X. Zhou, H.-Y. Wang, D. Ling, W. Liu, H. Ke","doi":"10.1680/jgein.21.00095","DOIUrl":null,"url":null,"abstract":"Soil flushing using prefabricated vertical drains (PVDs) is an innovative subsurface remediation technology for contaminated fine-grained soils. An analytical solution is presented to investigate the performance of PVD-enhanced system arranged in a rectangular pattern for soil remediation. The analytical solution is derived based on a simplified equivalent model in which PVDs are substituted by drain walls. The results of the analytical solution are shown to be roughly consistent with those obtained from the finite-element method. Using the proposed solution, the remediation efficiency for a rectangular layout is demonstrated to be higher than that for a parallel layout. Furthermore, the effects of distance between injection and extraction PVD, injection rate, distribution coefficient, and dispersivity are investigated. Results indicate that a square pattern is the optimal layout of PVDs compared to other rectangular patterns. Increasing the injection rate of individual PVDs is an effective way to improve the remediation efficiency. The increase of distribution coefficient of contaminant leads to a significant increase in the remediation time, and the increase of longitudinal and transverse dispersivity results in a more uniform spatial distribution of contaminant concentration during the flushing process.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.21.00095","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil flushing using prefabricated vertical drains (PVDs) is an innovative subsurface remediation technology for contaminated fine-grained soils. An analytical solution is presented to investigate the performance of PVD-enhanced system arranged in a rectangular pattern for soil remediation. The analytical solution is derived based on a simplified equivalent model in which PVDs are substituted by drain walls. The results of the analytical solution are shown to be roughly consistent with those obtained from the finite-element method. Using the proposed solution, the remediation efficiency for a rectangular layout is demonstrated to be higher than that for a parallel layout. Furthermore, the effects of distance between injection and extraction PVD, injection rate, distribution coefficient, and dispersivity are investigated. Results indicate that a square pattern is the optimal layout of PVDs compared to other rectangular patterns. Increasing the injection rate of individual PVDs is an effective way to improve the remediation efficiency. The increase of distribution coefficient of contaminant leads to a significant increase in the remediation time, and the increase of longitudinal and transverse dispersivity results in a more uniform spatial distribution of contaminant concentration during the flushing process.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.