{"title":"Prediction of Mechanical Properties of Woven Fabrics by ANN","authors":"Sherien N. Elkateb","doi":"10.2478/ftee-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to obtain an accurate prediction model of mechanical properties of woven fabric to achieve customer satisfaction. Samples of plain woven fabric were produced from different yarn counts and blend ratios of cotton and polyester of weft yarn at different weft densities. Mechanical properties such as tensile strength, bending stiffness and elongation% in both the warp and weft directions were tested. The prediction model was based on Artificial Neural Networks (ANNs). For each model, thirty-nine samples were used for training and fifteen for testing prediction performance. Findings indicated that the ANN achieved a perfect performance in predicting all properties.","PeriodicalId":12309,"journal":{"name":"Fibres & Textiles in Eastern Europe","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibres & Textiles in Eastern Europe","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/ftee-2022-0036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract This study aims to obtain an accurate prediction model of mechanical properties of woven fabric to achieve customer satisfaction. Samples of plain woven fabric were produced from different yarn counts and blend ratios of cotton and polyester of weft yarn at different weft densities. Mechanical properties such as tensile strength, bending stiffness and elongation% in both the warp and weft directions were tested. The prediction model was based on Artificial Neural Networks (ANNs). For each model, thirty-nine samples were used for training and fifteen for testing prediction performance. Findings indicated that the ANN achieved a perfect performance in predicting all properties.
期刊介绍:
FIBRES & TEXTILES in Eastern Europe is a peer reviewed bimonthly scientific journal devoted to current problems of fibre, textile and fibrous products’ science as well as general economic problems of textile industry worldwide. The content of the journal is available online as free open access.
FIBRES & TEXTILES in Eastern Europe constitutes a forum for the exchange of information and the establishment of mutual contact for cooperation between scientific centres, as well as between science and industry.