Optimization of Cesium Ion Exchange Performance with Hanford Tank Waste Feed Dilution

IF 1.8 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Solvent Extraction and Ion Exchange Pub Date : 2023-05-08 DOI:10.1080/07366299.2023.2205440
A. Westesen, E. Campbell, R. Peterson
{"title":"Optimization of Cesium Ion Exchange Performance with Hanford Tank Waste Feed Dilution","authors":"A. Westesen, E. Campbell, R. Peterson","doi":"10.1080/07366299.2023.2205440","DOIUrl":null,"url":null,"abstract":"ABSTRACT Crystalline silicotitanate (CST) ion exchanger is currently used to remove cesium (137Cs) from the aqueous phase of Hanford tank wastes in preparation for vitrification at the Waste Treatment and Immobilization Plant (WTP). The CST is a non-elutable inorganic ion exchanger targeted to maintain a decontamination factor of ≥1,000 prior to the column effluent reaching a waste acceptance criterion. In an effort to reduce costs generated by ion exchange processing, system optimization of the waste treatment has been conducted. Decreasing the tank waste supernate sodium molarity prior to processing through the ion exchange columns showed that it can significantly reduce the number of columns used while maintaining the necessary sodium throughput. Optimization of this process can result in significant cost savings and ultimately result in less waste production.","PeriodicalId":22002,"journal":{"name":"Solvent Extraction and Ion Exchange","volume":"41 1","pages":"531 - 544"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction and Ion Exchange","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/07366299.2023.2205440","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Crystalline silicotitanate (CST) ion exchanger is currently used to remove cesium (137Cs) from the aqueous phase of Hanford tank wastes in preparation for vitrification at the Waste Treatment and Immobilization Plant (WTP). The CST is a non-elutable inorganic ion exchanger targeted to maintain a decontamination factor of ≥1,000 prior to the column effluent reaching a waste acceptance criterion. In an effort to reduce costs generated by ion exchange processing, system optimization of the waste treatment has been conducted. Decreasing the tank waste supernate sodium molarity prior to processing through the ion exchange columns showed that it can significantly reduce the number of columns used while maintaining the necessary sodium throughput. Optimization of this process can result in significant cost savings and ultimately result in less waste production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hanford槽废液进料稀释对铯离子交换性能的优化
摘要结晶硅钛酸盐(CST)离子交换器目前用于从汉福德储罐废物的水相中去除铯(137Cs),为废物处理和固定化厂(WTP)的玻璃化做准备。CST是一种不可洗脱的无机离子交换器,其目标是在柱流出物达到废物接受标准之前保持≥1000的去污因子。为了降低离子交换处理产生的成本,已经对废物处理进行了系统优化。在通过离子交换柱处理之前降低罐废上清液的钠摩尔浓度表明,它可以显著减少所用柱的数量,同时保持必要的钠产量。该工艺的优化可以显著节省成本,并最终减少废物产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
5.00%
发文量
15
审稿时长
8.4 months
期刊介绍: Solvent Extraction and Ion Exchange is an international journal that publishes original research papers, reviews, and notes that address all aspects of solvent extraction, ion exchange, and closely related methods involving, for example, liquid membranes, extraction chromatography, supercritical fluids, ionic liquids, microfluidics, and adsorption. We welcome submissions that look at: The underlying principles in solvent extraction and ion exchange; Solvent extraction and ion exchange process development; New materials or reagents, their syntheses and properties; Computational methods of molecular design and simulation; Advances in equipment, fluid dynamics, and engineering; Interfacial phenomena, kinetics, and coalescence; Spectroscopic and diffraction analysis of structure and dynamics; Host-guest chemistry, ion receptors, and molecular recognition.
期刊最新文献
Optimized Lithium(I) Recovery from Geothermal Brine of Germencik, Türkiye, Utilizing an Aminomethyl phosphonic Acid Chelating Resin Efficient Copper Extraction from Industrial Dilute Solutions Using Air-Assisted Solvent Extraction An Advanced Solvent for the Caustic-Side Solvent Extraction of Cesium from Nuclear Waste: Comparing Lipophilic Guanidines for Improved Hydrolytic Stability Enhanced Separation of Americium and Curium in Cyanex301 System by Using Formic Acid and Glycolic Acid as Stripping Chelates Selective Extraction of Yttrium from Zr-Y-Nb-Th-Rich Microgranite Dike Leach Solution Using Cyanex 921
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1