14 Years of Self-Tracking Technology for mHealth—Literature Review: Lessons Learned and the PAST SELF Framework

Sofia Yfantidou, Pavlos Sermpezis, A. Vakali
{"title":"14 Years of Self-Tracking Technology for mHealth—Literature Review: Lessons Learned and the PAST SELF Framework","authors":"Sofia Yfantidou, Pavlos Sermpezis, A. Vakali","doi":"10.1145/3592621","DOIUrl":null,"url":null,"abstract":"In today’s connected society, many people rely on mHealth and self-tracking (ST) technology to help them adopt healthier habits with a focus on breaking their sedentary lifestyle and staying fit. However, there is scarce evidence of such technological interventions’ effectiveness, and there are no standardized methods to evaluate their impact on people’s physical activity and health. This work aims to help ST practitioners and researchers by empowering them with systematic guidelines and a framework for designing and evaluating technological interventions to facilitate health behavior change and user engagement, focusing on increasing physical activity and decreasing sedentariness. To this end, we conduct a literature review of 129 papers between 2008 and 2022, which identifies the core ST design principles and their efficacy, as well as the most comprehensive list to date of user engagement evaluation metrics for ST. Based on the review’s findings, we propose PAST SELF, a framework to guide the design and evaluation of ST technology that has potential applications in industrial and scientific settings. Finally, to facilitate researchers and practitioners, we complement this article with an open corpus and an online, adaptive exploration tool for the PAST SELF data.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"4 1","pages":"1 - 43"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In today’s connected society, many people rely on mHealth and self-tracking (ST) technology to help them adopt healthier habits with a focus on breaking their sedentary lifestyle and staying fit. However, there is scarce evidence of such technological interventions’ effectiveness, and there are no standardized methods to evaluate their impact on people’s physical activity and health. This work aims to help ST practitioners and researchers by empowering them with systematic guidelines and a framework for designing and evaluating technological interventions to facilitate health behavior change and user engagement, focusing on increasing physical activity and decreasing sedentariness. To this end, we conduct a literature review of 129 papers between 2008 and 2022, which identifies the core ST design principles and their efficacy, as well as the most comprehensive list to date of user engagement evaluation metrics for ST. Based on the review’s findings, we propose PAST SELF, a framework to guide the design and evaluation of ST technology that has potential applications in industrial and scientific settings. Finally, to facilitate researchers and practitioners, we complement this article with an open corpus and an online, adaptive exploration tool for the PAST SELF data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mHealth自跟踪技术的14年——文献综述:经验教训和PAST Self框架
在当今互联社会,许多人依靠mHealth和自我跟踪(ST)技术来帮助他们养成更健康的习惯,重点是打破久坐不动的生活方式,保持健康。然而,很少有证据表明这种技术干预措施的有效性,也没有标准化的方法来评估它们对人们身体活动和健康的影响。这项工作旨在帮助ST从业者和研究人员,为他们提供系统的指导方针和设计和评估技术干预措施的框架,以促进健康行为的改变和用户参与,重点是增加体力活动和减少久坐。为此,我们对2008年至2022年间的129篇论文进行了文献综述,确定了ST的核心设计原则及其功效,以及迄今为止最全面的ST用户参与度评估指标列表。基于综述的结果,我们提出了PAST SELF,指导在工业和科学环境中具有潜在应用的ST技术的设计和评估的框架。最后,为了方便研究人员和从业者,我们用一个开放的语料库和一个用于PAST SELF数据的在线自适应探索工具来补充本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1