Computational Language Modeling and the Promise of In Silico Experimentation.

IF 3.6 Q1 LINGUISTICS Neurobiology of Language Pub Date : 2024-04-01 eCollection Date: 2024-01-01 DOI:10.1162/nol_a_00101
Shailee Jain, Vy A Vo, Leila Wehbe, Alexander G Huth
{"title":"Computational Language Modeling and the Promise of In Silico Experimentation.","authors":"Shailee Jain, Vy A Vo, Leila Wehbe, Alexander G Huth","doi":"10.1162/nol_a_00101","DOIUrl":null,"url":null,"abstract":"<p><p>Language neuroscience currently relies on two major experimental paradigms: controlled experiments using carefully hand-designed stimuli, and natural stimulus experiments. These approaches have complementary advantages which allow them to address distinct aspects of the neurobiology of language, but each approach also comes with drawbacks. Here we discuss a third paradigm-in silico experimentation using deep learning-based encoding models-that has been enabled by recent advances in cognitive computational neuroscience. This paradigm promises to combine the interpretability of controlled experiments with the generalizability and broad scope of natural stimulus experiments. We show four examples of simulating language neuroscience experiments in silico and then discuss both the advantages and caveats of this approach.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/nol_a_00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Language neuroscience currently relies on two major experimental paradigms: controlled experiments using carefully hand-designed stimuli, and natural stimulus experiments. These approaches have complementary advantages which allow them to address distinct aspects of the neurobiology of language, but each approach also comes with drawbacks. Here we discuss a third paradigm-in silico experimentation using deep learning-based encoding models-that has been enabled by recent advances in cognitive computational neuroscience. This paradigm promises to combine the interpretability of controlled experiments with the generalizability and broad scope of natural stimulus experiments. We show four examples of simulating language neuroscience experiments in silico and then discuss both the advantages and caveats of this approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机语言建模和计算机实验的前景
语言神经科学目前依赖于两种主要的实验范式:使用精心设计的刺激的对照实验和自然刺激实验。这些方法具有互补的优势,可以解决语言神经生物学的不同方面,但每种方法都有缺点。在这里,我们讨论了第三种范式——使用基于深度学习的编码模型的计算机实验——认知计算神经科学的最新进展使其成为可能。该范式承诺将受控实验的可解释性与自然刺激实验的可推广性和广泛范围相结合。我们展示了四个在计算机上模拟语言神经科学实验的例子,然后讨论了这种方法的优点和注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Language
Neurobiology of Language Social Sciences-Linguistics and Language
CiteScore
5.90
自引率
6.20%
发文量
32
审稿时长
17 weeks
期刊最新文献
The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children. A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data. Neural Mechanisms of Learning and Consolidation of Morphologically Derived Words in a Novel Language: Evidence From Hebrew Speakers. Cerebellar Atrophy and Language Processing in Chronic Left-Hemisphere Stroke. Cortico-Cerebellar Monitoring of Speech Sequence Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1