Centrifuge modeling of ground vibrations mitigation by inclined geofoam barrier

IF 1.2 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL International Journal of Physical Modelling in Geotechnics Pub Date : 2023-07-03 DOI:10.1680/jphmg.22.00032
H. Shahnazari, M. Kazemi, M. Baziar
{"title":"Centrifuge modeling of ground vibrations mitigation by inclined geofoam barrier","authors":"H. Shahnazari, M. Kazemi, M. Baziar","doi":"10.1680/jphmg.22.00032","DOIUrl":null,"url":null,"abstract":"This paper presents a centrifuge study on the performance of inclined geofoam barriers compared to vertical geofoam barrier for the mitigation of ground vibrations induced by high-speed railways. Three different barrier inclinations (60°, 90° and 120°) are used in three centrifuge models. Each centrifuge model is tested for seven different frequencies. Therefore, the results of 21 centrifuge tests are reported in this paper. The results show that the barrier efficiency of inclined barriers is more than vertical barrier efficiency for the points located behind the barrier. However, for the point located before the barrier, the barrier efficiency reduces by using inclined barriers instead of the vertical barrier. The results also illustrate that the barrier efficiencies for two inclined barriers used in this research, which have supplementary angles, are almost the same.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jphmg.22.00032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a centrifuge study on the performance of inclined geofoam barriers compared to vertical geofoam barrier for the mitigation of ground vibrations induced by high-speed railways. Three different barrier inclinations (60°, 90° and 120°) are used in three centrifuge models. Each centrifuge model is tested for seven different frequencies. Therefore, the results of 21 centrifuge tests are reported in this paper. The results show that the barrier efficiency of inclined barriers is more than vertical barrier efficiency for the points located behind the barrier. However, for the point located before the barrier, the barrier efficiency reduces by using inclined barriers instead of the vertical barrier. The results also illustrate that the barrier efficiencies for two inclined barriers used in this research, which have supplementary angles, are almost the same.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倾斜土工泡沫屏障减缓地面振动的离心机模型
本文对倾斜土工泡沫屏障与垂直土工泡沫护栏在缓解高速铁路引起的地面振动方面的性能进行了离心研究。在三种离心机模型中使用了三种不同的屏障倾角(60°、90°和120°)。每个离心机模型都在七个不同的频率下进行了测试。因此,本文报道了21次离心机试验的结果。结果表明,对于位于屏障后面的点,倾斜屏障的屏障效率大于垂直屏障效率。然而,对于位于屏障之前的点,使用倾斜屏障而不是垂直屏障会降低屏障效率。结果还表明,本研究中使用的两种具有辅助角度的倾斜屏障的屏障效率几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
15.80%
发文量
26
期刊介绍: International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.
期刊最新文献
Active failure mechanism and earth pressure of narrow backfill behind retaining structures Physical modelling of cyclic loading induced footing settlement with a nearby pit excavation Centrifuge tests exploring the cyclic performance of suction bucket foundations in cohesionless soils Award-winning paper in 2022 International Journal of Physical Modelling in Geotechnics: Referees 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1