The Shrinkage Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection

IF 0.6 Q4 BUSINESS, FINANCE Journal of Investing Pub Date : 2022-12-14 DOI:10.3905/joi.2022.1.252
Moshe Levy, Richard Roll
{"title":"The Shrinkage Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection","authors":"Moshe Levy, Richard Roll","doi":"10.3905/joi.2022.1.252","DOIUrl":null,"url":null,"abstract":"Mutual fund selection is a notoriously difficult task, because past performance is a poor predictor of future performance. We propose a fund performance measure that incorporates a simple idea: shrinkage, in the sense of Bayes-James-Stein, should be applied to gross return parameters, but not to fees, which are known. The proposed Shrinkage Adjusted Sharpe ratio (SAS) substantially improves the prediction of out-of-sample performance relative to existing methods. The best prediction is obtained when fees are weighed five times heavier than sample returns.","PeriodicalId":45504,"journal":{"name":"Journal of Investing","volume":"32 1","pages":"7 - 23"},"PeriodicalIF":0.6000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/joi.2022.1.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mutual fund selection is a notoriously difficult task, because past performance is a poor predictor of future performance. We propose a fund performance measure that incorporates a simple idea: shrinkage, in the sense of Bayes-James-Stein, should be applied to gross return parameters, but not to fees, which are known. The proposed Shrinkage Adjusted Sharpe ratio (SAS) substantially improves the prediction of out-of-sample performance relative to existing methods. The best prediction is obtained when fees are weighed five times heavier than sample returns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
收缩调整夏普比率:一种改进的共同基金选择方法
众所周知,选择共同基金是一项困难的任务,因为过去的业绩对未来的业绩预测很差。我们提出了一个基金业绩指标,其中包含了一个简单的想法:Bayes James Stein意义上的收缩应该应用于总回报参数,而不是已知的费用。相对于现有方法,所提出的收缩调整夏普比(SAS)显著改进了对样本外性能的预测。当费用比样本回报重五倍时,可以获得最佳预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Investing
Journal of Investing BUSINESS, FINANCE-
CiteScore
1.10
自引率
16.70%
发文量
42
期刊最新文献
A New Global Portfolio Weighting Strategy Based on Cointegration Methods “I Have Never Seen a Bad Backtest”: Modeling Reality in Quantitative Investing Predicting Market Risk Premiums with Historical Patterns How Many Securities Should an Active Manager hold? What Makes the Dollar Cost Averaging Strategy So Popular Today? A Critical Review of the Benefits and Risks of a Controversial Investment Scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1