Ekstraksi Data Bangunan Dari Data Citra Unmanned Aerial Vehicle Menggunakan Metode Convolutional Neural Networks (CNN) (Studi Kasus: Desa Campurejo, Kabupaten Gresik)

Citra Ayu Sekar Kinasih, H. Hidayat
{"title":"Ekstraksi Data Bangunan Dari Data Citra Unmanned Aerial Vehicle Menggunakan Metode Convolutional Neural Networks (CNN) (Studi Kasus: Desa Campurejo, Kabupaten Gresik)","authors":"Citra Ayu Sekar Kinasih, H. Hidayat","doi":"10.12962/j24423998.v17i1.10289","DOIUrl":null,"url":null,"abstract":": Along with increasing development due to population growth, a proper monitoring of land use is needed, one of which is through mapping the distribution of buildings. Mapping the distribution of buildings can be done by analyzing remote sensing images taken using various vehicles, one of which is the Unmanned Aerial Vehicle (UAV) which can provide very high-resolution images. However, up to now the classification process is often done by manual digitization which is considered less effective and efficient so that an automatic extraction method is needed. In this study, the Convolutional Neural Networks (CNN) method was used to overcome the challenges of building extraction using high resolution aerial photo image data in Campurejo Village, Gresik Regency using the R-CNN where this is expected to be able to help the classification process automatically by using the Mask R-CNN algorithm. input data (training data). the results of the classification are validated and tested for accuracy to produce a large-scale building distribution map, namely 1: 5000. The accuracy of the building classification results using the Mask R-CNN method was tested using a confusion matrix which resulted in a precision value of 94.78%, recall 82.63%, F1 Score 88.29% and accuracy 79.03% for region 1 and for region 2 resulted precision value 98.10%, recall 78.37%, F1 Score 87.13% and accuracy 77.20%. While the number of buildings that can be in area 1 is 2102 buildings and area 2 is 247 buildings. shows great potential to utilize the Convolutional Neural Networks (CNN) method in extracting buildings.","PeriodicalId":30776,"journal":{"name":"Geoid","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j24423998.v17i1.10289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Along with increasing development due to population growth, a proper monitoring of land use is needed, one of which is through mapping the distribution of buildings. Mapping the distribution of buildings can be done by analyzing remote sensing images taken using various vehicles, one of which is the Unmanned Aerial Vehicle (UAV) which can provide very high-resolution images. However, up to now the classification process is often done by manual digitization which is considered less effective and efficient so that an automatic extraction method is needed. In this study, the Convolutional Neural Networks (CNN) method was used to overcome the challenges of building extraction using high resolution aerial photo image data in Campurejo Village, Gresik Regency using the R-CNN where this is expected to be able to help the classification process automatically by using the Mask R-CNN algorithm. input data (training data). the results of the classification are validated and tested for accuracy to produce a large-scale building distribution map, namely 1: 5000. The accuracy of the building classification results using the Mask R-CNN method was tested using a confusion matrix which resulted in a precision value of 94.78%, recall 82.63%, F1 Score 88.29% and accuracy 79.03% for region 1 and for region 2 resulted precision value 98.10%, recall 78.37%, F1 Score 87.13% and accuracy 77.20%. While the number of buildings that can be in area 1 is 2102 buildings and area 2 is 247 buildings. shows great potential to utilize the Convolutional Neural Networks (CNN) method in extracting buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着人口增长的发展,需要对土地的使用进行适当的监测,其中之一就是绘制建筑物的分布图。测绘建筑物的分布可以通过分析使用各种交通工具拍摄的遥感图像来完成,其中一种是无人机(UAV),它可以提供非常高分辨率的图像。然而,目前的分类过程往往是通过人工数字化来完成的,这被认为是不太有效和高效的,因此需要一种自动提取方法。在本研究中,使用卷积神经网络(CNN)方法克服了在Gresik Regency的Campurejo村使用R-CNN的高分辨率航空照片图像数据进行建筑物提取的挑战,预计这将能够通过使用Mask R-CNN算法自动帮助分类过程。输入数据(训练数据)。对分类结果进行了验证和准确性测试,以生成1:5000的大型建筑物分布图。采用混淆矩阵对Mask R-CNN方法的建筑物分类结果进行了准确性检验,结果表明,区域1的准确率为94.78%,召回率为82.63%,F1 Score为88.29%,准确率为79.03%;区域2的准确率为98.10%,召回率为78.37%,F1 Score为87.13%,准确率为77.20%。而区域1的建筑数量是2102个,区域2是247个。利用卷积神经网络(CNN)方法提取建筑物显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊最新文献
Penggunaan Deep Learning dan Post-Processing Algoritma Douglas-Peucker untuk Ekstraksi Jaringan Jalan pada Area Urban dari Orthophoto Evaluasi Prioritas Kesesuaian Ruang Terbuka Hijau (RTH) di Kecamatan Kanigaran Perbandingan Hasil Klasifikasi Tutupan Lahan Menggunakan Metode Artificial Neural Network (ANN), Support Vector Machine (SVM), dan Random Forest (RF) dengan Bahasa Pemrograman R Prototipe Augmented Reality Berbasis Mobile untuk Navigasi Pelayaran yang Aman di Wilayah Perairan Selat Madura Analisis Sebaran Spasial Genangan Banjir Terkait Tutupan Lahan di Kota Banjarmasin, Kalimantan Selatan Menggunakan Citra Sentinel 1 dan 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1