Machine learning based method for forecasting short-term passenger flow in urban rail stations

Mingwei Hu, Xiaolong Shi, Wen Wu, Guoqing He
{"title":"Machine learning based method for forecasting short-term passenger flow in urban rail stations","authors":"Mingwei Hu, Xiaolong Shi, Wen Wu, Guoqing He","doi":"10.3724/sp.j.1249.2022.05593","DOIUrl":null,"url":null,"abstract":"交通压力的有效途径之一.为提高轨道系统的运行效率,实现轨道交通智慧化运营,基于机器学习算法理 论,结合轨道交通车站的时间、空间及外部影响因素等客流特征,建立轻量的梯度提升机(light gradient boosting machine,LightGBM)、长短期记忆(long short-term memory,LSTM)及 LightGBM-LSTM融合模型的车 站短时客流预测模型,同时构建差分自回归移动平均(autoregressive integrated moving average,ARIMA)和极 限梯度提升(extreme gradient boosting,XGBoost)模型作为预测实验的对照模型.以中国杭州地铁自动售票系 统刷卡数据为例,选取了5种地铁车站(居住类型、工作类型、居住工作混合类型、购物类型及交通枢纽类 型)和3个准确性评价指标(平均绝对误差、均方根误差及平均绝对百分误差),量化评价不同模型的预测准","PeriodicalId":35396,"journal":{"name":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/sp.j.1249.2022.05593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

交通压力的有效途径之一.为提高轨道系统的运行效率,实现轨道交通智慧化运营,基于机器学习算法理 论,结合轨道交通车站的时间、空间及外部影响因素等客流特征,建立轻量的梯度提升机(light gradient boosting machine,LightGBM)、长短期记忆(long short-term memory,LSTM)及 LightGBM-LSTM融合模型的车 站短时客流预测模型,同时构建差分自回归移动平均(autoregressive integrated moving average,ARIMA)和极 限梯度提升(extreme gradient boosting,XGBoost)模型作为预测实验的对照模型.以中国杭州地铁自动售票系 统刷卡数据为例,选取了5种地铁车站(居住类型、工作类型、居住工作混合类型、购物类型及交通枢纽类 型)和3个准确性评价指标(平均绝对误差、均方根误差及平均绝对百分误差),量化评价不同模型的预测准
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的城市轨道车站短期客流预测方法
One of the effective ways to improve the operational efficiency of the rail system and achieve intelligent operation of rail transit, based on machine learning algorithm theory, combined with the passenger flow characteristics of rail transit stations such as time, space, and external influencing factors, a lightweight gradient boosting machine (LightGBM), long short term memory (LSTM), and LightGBM-LSTM fusion model for station short-term passenger flow prediction are established, Simultaneously constructing differential autoregressive integrated moving average (ARIMA) and extreme gradient boosting (XGBoost) models as control models for predictive experiments. Taking the swiping data of the Hangzhou subway ticketing system in China as an example, Five subway stations (residential type, work type, mixed residential and work type, shopping type, and transportation hub type) and three accuracy evaluation indicators (average absolute error, root mean square error, and average absolute percentage error) were selected to quantitatively evaluate the predictive accuracy of different models
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
14
期刊最新文献
Transient control strategy of doubly-fed fan based on zero dynamic and super twist control The unpaired operation of urban rail transit Optimization of high-speed train timetable based on regenerative braking energy utilization Deep-learning-based prediction method of steam channeling time in heavy oil reservoirs Fault classification method for on-board equipment of metro train control system based on BERT-CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1