Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta
{"title":"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data","authors":"Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta","doi":"10.1515/SNDE-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"73 - 98"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/SNDE-2019-0009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/SNDE-2019-0009","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.