Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2020-11-17 DOI:10.1515/SNDE-2019-0009
Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta
{"title":"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data","authors":"Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta","doi":"10.1515/SNDE-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"73 - 98"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/SNDE-2019-0009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/SNDE-2019-0009","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重分形过程是否适合预测电价波动?来自澳大利亚盘中数据的证据
摘要我们分析了澳大利亚电价回报,发现它们表现出波动性集群、长记忆、结构断裂和多重分形。因此,我们让回归均值方程遵循两个替代规范,即(i)平稳过渡自回归分数积分移动平均(STARFIMA)过程和(ii)马尔可夫切换自回归分数集成移动平均(MSARFIMA)进程。我们通过一组(i)短记忆和长记忆GARCH型过程,(ii)马尔可夫切换(MS)GARCH型进程,和(iii)马尔可夫切换多重分形(MSM)过程来指定波动性动力学。基于相等和优越的预测能力测试(使用MSE和MAE损失函数),我们比较了模型的样本外相对预测性能。我们发现(多重分形)MSM波动率模型符合传统的GARCH和MSGARCH型规范。特别是,当使用日平方收益率作为潜在波动率的代理时,MSM模型的表现优于其他规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1