Eliminating proxy errors from capital estimates by targeted exact computation

IF 1 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2022-10-07 DOI:10.1017/s1748499522000161
D. J. Crispin, S. M. Kinsley
{"title":"Eliminating proxy errors from capital estimates by targeted exact computation","authors":"D. J. Crispin, S. M. Kinsley","doi":"10.1017/s1748499522000161","DOIUrl":null,"url":null,"abstract":"\n Determining accurate capital requirements is a central activity across the life insurance industry. This is computationally challenging and often involves the acceptance of proxy errors that directly impact capital requirements. Within simulation-based capital models, where proxies are being used, capital estimates are approximations that contain both statistical and proxy errors. Here, we show how basic error analysis combined with targeted exact computation can entirely eliminate proxy errors from the capital estimate. Consideration of the possible ordering of losses, combined with knowledge of their error bounds, identifies an important subset of scenarios. When these scenarios are calculated exactly, the resulting capital estimate can be made devoid of proxy errors. Advances in the handling of proxy errors improve the accuracy of capital requirements.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499522000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Determining accurate capital requirements is a central activity across the life insurance industry. This is computationally challenging and often involves the acceptance of proxy errors that directly impact capital requirements. Within simulation-based capital models, where proxies are being used, capital estimates are approximations that contain both statistical and proxy errors. Here, we show how basic error analysis combined with targeted exact computation can entirely eliminate proxy errors from the capital estimate. Consideration of the possible ordering of losses, combined with knowledge of their error bounds, identifies an important subset of scenarios. When these scenarios are calculated exactly, the resulting capital estimate can be made devoid of proxy errors. Advances in the handling of proxy errors improve the accuracy of capital requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过有针对性的精确计算消除资本估计中的代理误差
确定准确的资本要求是整个人寿保险行业的核心活动。这在计算上具有挑战性,并且通常涉及接受直接影响资本要求的代理错误。在使用代理的基于模拟的资本模型中,资本估计是包含统计误差和代理误差的近似值。在这里,我们展示了基本误差分析与目标精确计算相结合如何从资本估计中完全消除代理误差。对损失可能排序的考虑,结合对其误差界限的了解,确定了一个重要的场景子集。当这些情景被准确计算时,由此产生的资本估计可以不存在代理误差。代理错误处理方面的进步提高了资本要求的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach Bonus-Malus Scale premiums for Tweedie’s compound Poisson models Risk analysis of a multivariate aggregate loss model with dependence Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1