Denoising of Hyperspectral Signal from Drone for Ganoderma Disease Detection in Oil Palm

Q4 Social Sciences International Journal of Geoinformatics Pub Date : 2023-06-10 DOI:10.52939/ijg.v19i5.2659
{"title":"Denoising of Hyperspectral Signal from Drone for Ganoderma Disease Detection in Oil Palm","authors":"","doi":"10.52939/ijg.v19i5.2659","DOIUrl":null,"url":null,"abstract":"Oil palm is an important crop that generates high income to Malaysia. However, the oil palm is susceptible to Ganoderma infection that reduces the productivity of the oil palm. Conventional ground-based disease detection is laborious and costly. Therefore, airborne remote sensing technology coupled with ground detection provides a more effective control of the disease. Airborne hyperspectral remote sensing utilizes narrow and contiguous bands to assist in detection of diseases in crops. Spectral responses recorded by the camera tend to suffer from interference and these noises could reduce the quality of the data. Therefore, this study presents the application of Savitzky-Golay and wavelet spectral denoising technique to improve the hyperspectral signatures for Ganoderma disease detection in oil palm","PeriodicalId":38707,"journal":{"name":"International Journal of Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52939/ijg.v19i5.2659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Oil palm is an important crop that generates high income to Malaysia. However, the oil palm is susceptible to Ganoderma infection that reduces the productivity of the oil palm. Conventional ground-based disease detection is laborious and costly. Therefore, airborne remote sensing technology coupled with ground detection provides a more effective control of the disease. Airborne hyperspectral remote sensing utilizes narrow and contiguous bands to assist in detection of diseases in crops. Spectral responses recorded by the camera tend to suffer from interference and these noises could reduce the quality of the data. Therefore, this study presents the application of Savitzky-Golay and wavelet spectral denoising technique to improve the hyperspectral signatures for Ganoderma disease detection in oil palm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机高光谱信号去噪在油棕灵芝病害检测中的应用
油棕是马来西亚重要的高收入作物。然而,油棕容易受到灵芝感染,从而降低了油棕的生产力。传统的地面疾病检测既费力又昂贵。因此,机载遥感技术与地面探测相结合,可以更有效地控制该疾病。航空高光谱遥感利用窄频带和连续频带来协助检测作物病害。相机记录的光谱响应容易受到干扰,这些噪声会降低数据的质量。因此,本研究提出应用Savitzky-Golay和小波光谱去噪技术改进油棕灵芝病害检测的高光谱特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Geoinformatics
International Journal of Geoinformatics Social Sciences-Geography, Planning and Development
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Urban Expansion in Small Cities: A Case Study of the Al-Qassim Region, Saudi Arabia An Investigation of Soil Spectral Characteristics under Different Conditions in Jordan Generative Adversarial Networks in Healthcare Sector Optimal Locations of Municipal Solid Waste-to-Value-Added Conversion Facilities Using GIS Analysis: A Case Study in Mymensingh Division, Bangladesh Analysis of Hotel Distribution Patterns in Hail, Saudi Arabia, Using Geographic Information Systems (GIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1