Correlation-type goodness-of-fit tests based on independence characterizations

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2023-05-04 DOI:10.1007/s10182-023-00475-x
Katarina Halaj, Bojana Milošević, Marko Obradović, M. Dolores Jiménez-Gamero
{"title":"Correlation-type goodness-of-fit tests based on independence characterizations","authors":"Katarina Halaj,&nbsp;Bojana Milošević,&nbsp;Marko Obradović,&nbsp;M. Dolores Jiménez-Gamero","doi":"10.1007/s10182-023-00475-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses independence-type characterizations to propose a class of test statistics which can be used for testing goodness-of-fit with several classes of null distributions. The resulting tests are consistent against fixed alternatives. Some limiting and small sample properties of the test statistics are explored. In comparison with common universal goodness-of-fit tests, the new tests exhibit better power for most of the alternatives considered, while in comparison with another characterization-based procedure, the new tests provide competitive or comparable power in various simulation settings. The handiness of the proposed tests is demonstrated through several real-data examples.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00475-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses independence-type characterizations to propose a class of test statistics which can be used for testing goodness-of-fit with several classes of null distributions. The resulting tests are consistent against fixed alternatives. Some limiting and small sample properties of the test statistics are explored. In comparison with common universal goodness-of-fit tests, the new tests exhibit better power for most of the alternatives considered, while in comparison with another characterization-based procedure, the new tests provide competitive or comparable power in various simulation settings. The handiness of the proposed tests is demonstrated through several real-data examples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立性特征的相关型拟合优度检验
本文利用独立性类型特征提出了一类检验统计量,可用于检验几类无效分布的拟合优度。由此得出的检验结果对固定的替代方案是一致的。文章还探讨了检验统计量的一些极限和小样本特性。与常见的通用拟合优度检验相比,新检验对大多数备选方案都表现出更强的能力,而与另一种基于特征描述的程序相比,新检验在各种模拟环境中都能提供具有竞争力或可比的能力。通过几个真实数据实例,证明了所提出的测试方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1