Estimating effective Q parameters from reflection seismic data using BPNN

Pub Date : 2023-05-18 DOI:10.1080/08123985.2023.2183114
Jizhong Wu, Ying Shi, Xiangguo Dong
{"title":"Estimating effective Q parameters from reflection seismic data using BPNN","authors":"Jizhong Wu, Ying Shi, Xiangguo Dong","doi":"10.1080/08123985.2023.2183114","DOIUrl":null,"url":null,"abstract":"The viscoelasticity of an underground medium will cause absorption and attenuation of seismic waves, resulting in energy attenuation and phase distortion. This absorption and attenuation is often quantified by the quality Factor Q. The strong attenuation effect resulting from geology is a challenging problem for high-resolution imaging. To compensate for the attenuation effect, it is necessary to estimate the attenuation parameters accurately. However, it is difficult to directly derive a heterogeneous attenuation Q model. This research letter proposes a method to derive a Q model from reflection seismic data using a backpropagation neural network (BPNN), one of the most widely used neural network models. We treated the Q detection problem as a pattern recognition task and train a network to assign the correct Q classes to a set of input patterns. The proposed method uses synthetic data for network training and validation. Finally, we used a set of model data and a set of field data to demonstrate the effectiveness of this method, and the high-resolution imaging results in the time domain with appropriate compensation are obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2023.2183114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The viscoelasticity of an underground medium will cause absorption and attenuation of seismic waves, resulting in energy attenuation and phase distortion. This absorption and attenuation is often quantified by the quality Factor Q. The strong attenuation effect resulting from geology is a challenging problem for high-resolution imaging. To compensate for the attenuation effect, it is necessary to estimate the attenuation parameters accurately. However, it is difficult to directly derive a heterogeneous attenuation Q model. This research letter proposes a method to derive a Q model from reflection seismic data using a backpropagation neural network (BPNN), one of the most widely used neural network models. We treated the Q detection problem as a pattern recognition task and train a network to assign the correct Q classes to a set of input patterns. The proposed method uses synthetic data for network training and validation. Finally, we used a set of model data and a set of field data to demonstrate the effectiveness of this method, and the high-resolution imaging results in the time domain with appropriate compensation are obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用BPNN从反射地震数据中估计有效Q参数
地下介质的粘弹性会引起地震波的吸收和衰减,导致能量衰减和相位畸变。这种吸收和衰减通常用质量因子Q来量化。地质造成的强烈衰减效应对高分辨率成像来说是一个具有挑战性的问题。为了补偿衰减效应,有必要准确地估计衰减参数。然而,很难直接推导出非均匀衰减Q模型。这封研究信提出了一种使用反向传播神经网络(BPNN)从反射地震数据中导出Q模型的方法,BPNN是使用最广泛的神经网络模型之一。我们将Q检测问题视为模式识别任务,并训练网络将正确的Q类分配给一组输入模式。所提出的方法使用合成数据进行网络训练和验证。最后,我们使用一组模型数据和一组现场数据来证明该方法的有效性,并获得了经过适当补偿的时域高分辨率成像结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1