A Study on the Influence of Printing Orientation in Metal Printing Using Material Extrusion Technology on the Mechanical Properties of 17-4 Stainless Steel Products
Cuong Van Nguyen, Longji Dang, A. Le, Danh Thanh Bui
{"title":"A Study on the Influence of Printing Orientation in Metal Printing Using Material Extrusion Technology on the Mechanical Properties of 17-4 Stainless Steel Products","authors":"Cuong Van Nguyen, Longji Dang, A. Le, Danh Thanh Bui","doi":"10.36897/jme/170509","DOIUrl":null,"url":null,"abstract":"This study investigated the influence of print orientation on the mechanical properties of 17-4 PH stainless steel parts fabricated using material extrusion technology. Tensile test specimens were 3D printed in different orientations (flat, on-edge, and upright), and their mechanical properties were evaluated. The results showed that the print orientation significantly affected the ultimate tensile strength, yield strength, and elongation at failure of the specimens. The flat and on-edge orientations exhibited similar mechanical properties, while the upright orientation resulted in lower strength and higher fracture susceptibility. Hardness measurements also indicated variations in hardness distribution among the orientations. The findings emphasize the importance of optimizing the print orientation parameter to achieve desired mechanical characteristics in 17-4 PH stainless steel parts.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/170509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the influence of print orientation on the mechanical properties of 17-4 PH stainless steel parts fabricated using material extrusion technology. Tensile test specimens were 3D printed in different orientations (flat, on-edge, and upright), and their mechanical properties were evaluated. The results showed that the print orientation significantly affected the ultimate tensile strength, yield strength, and elongation at failure of the specimens. The flat and on-edge orientations exhibited similar mechanical properties, while the upright orientation resulted in lower strength and higher fracture susceptibility. Hardness measurements also indicated variations in hardness distribution among the orientations. The findings emphasize the importance of optimizing the print orientation parameter to achieve desired mechanical characteristics in 17-4 PH stainless steel parts.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.