Machine learning for Internet of things anomaly detection under low-quality data

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Distributed Sensor Networks Pub Date : 2022-10-01 DOI:10.1177/15501329221133765
Shangbin Han, Qianhong Wu, Yang Yang
{"title":"Machine learning for Internet of things anomaly detection under low-quality data","authors":"Shangbin Han, Qianhong Wu, Yang Yang","doi":"10.1177/15501329221133765","DOIUrl":null,"url":null,"abstract":"With the popularization of Internet of things, its network security has aroused widespread concern. Anomaly detection is one of the important technologies to protect network security. To meet the needs of automatic and intelligent detection, supervised machine learning is widely used in anomaly detection. However, the existing schemes ignore the problem of data quality, which leads to the unsatisfactory detection effect in practice. Therefore, practitioners may not know which algorithm to choose due to the lack of review and evaluation of anomaly detection methods under low-quality data. To address this problem, we give a detailed review and evaluation of six supervised anomaly detection methods, as well as release the core code of feature extractor for pcap format traffic traces and anomaly detection methods for reuse. We evaluate the methods on two public datasets (one is a simulated network dataset and the other is a real Internet of things dataset). We believe that our work and insights will help practitioners quickly understand and develop anomaly detection schemes for Internet of things and can provide reference for future research.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221133765","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

With the popularization of Internet of things, its network security has aroused widespread concern. Anomaly detection is one of the important technologies to protect network security. To meet the needs of automatic and intelligent detection, supervised machine learning is widely used in anomaly detection. However, the existing schemes ignore the problem of data quality, which leads to the unsatisfactory detection effect in practice. Therefore, practitioners may not know which algorithm to choose due to the lack of review and evaluation of anomaly detection methods under low-quality data. To address this problem, we give a detailed review and evaluation of six supervised anomaly detection methods, as well as release the core code of feature extractor for pcap format traffic traces and anomaly detection methods for reuse. We evaluate the methods on two public datasets (one is a simulated network dataset and the other is a real Internet of things dataset). We believe that our work and insights will help practitioners quickly understand and develop anomaly detection schemes for Internet of things and can provide reference for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低质量数据下物联网异常检测的机器学习
随着物联网的普及,其网络安全问题引起了广泛关注。异常检测是保障网络安全的重要技术之一。为了满足自动化和智能化检测的需要,监督式机器学习在异常检测中得到了广泛的应用。然而,现有的检测方案忽略了数据质量问题,导致实际检测效果不理想。因此,由于缺乏对低质量数据下异常检测方法的审查和评价,从业者可能不知道该选择哪种算法。为了解决这一问题,我们对六种监督异常检测方法进行了详细的回顾和评价,并发布了pcap格式流量轨迹特征提取器的核心代码和异常检测方法,以供重用。我们在两个公共数据集(一个是模拟的网络数据集,另一个是真实的物联网数据集)上对方法进行了评估。我们相信我们的工作和见解将帮助从业者快速理解和制定物联网异常检测方案,并为未来的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
期刊最新文献
An Intrusion Detection Model Based on Feature Selection and Improved One-Dimensional Convolutional Neural Network Convex Combination for Wireless Localization Using Biased RSS Measurements Research on Visual SLAM Navigation Techniques for Dynamic Environments Improved Private Data Protection Scheme for Blockchain Smart Contracts Parameter Identification of Frame Structures by considering Shear Deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1