{"title":"A Distributed Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation From Multi-Source Data","authors":"Lianyong Qi, Xuyun Zhang, Wanchun Dou, Q. Ni","doi":"10.1109/JSAC.2017.2760458","DOIUrl":null,"url":null,"abstract":"To maximize the economic benefits, a cloud service provider needs to recommend its services to as many users as possible based on the historical user-service quality data. However, when a cloud platform (e.g., Amazon) intends to make a service recommendation decision, considering only its own user-service quality data is insufficient, because a cloud user may invoke services from multiple distributed cloud platforms (e.g., Amazon and IBM). In this situation, it is promising for Amazon to collaborate with other cloud platforms (e.g., IBM) to utilize the integrated data for the service recommendation to improve the recommendation accuracy. However, two challenges are present in the above-mentioned collaboration process, where we attempt to use multi-source data for the service recommendation. First, protecting users’ privacy is challenging when IBM releases its own data to Amazon. Second, the recommendation efficiency and scalability are often low when the user-service quality data of Amazon and IBM update frequently. Considering these challenges, a privacy-preserving and scalable service recommendation approach based on distributed locality-sensitive hashing, i.e., $\\textit {SerRec}_{\\textit {distri-LSH}}$ , is proposed in this paper to handle the service recommendation in a distributed cloud environment. Extensive experiments on the WS-DREAM data set validate the feasibility of our approach in terms of service recommendation accuracy, scalability, and privacy preservation.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"2616-2624"},"PeriodicalIF":13.8000,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760458","citationCount":"179","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2017.2760458","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 179
Abstract
To maximize the economic benefits, a cloud service provider needs to recommend its services to as many users as possible based on the historical user-service quality data. However, when a cloud platform (e.g., Amazon) intends to make a service recommendation decision, considering only its own user-service quality data is insufficient, because a cloud user may invoke services from multiple distributed cloud platforms (e.g., Amazon and IBM). In this situation, it is promising for Amazon to collaborate with other cloud platforms (e.g., IBM) to utilize the integrated data for the service recommendation to improve the recommendation accuracy. However, two challenges are present in the above-mentioned collaboration process, where we attempt to use multi-source data for the service recommendation. First, protecting users’ privacy is challenging when IBM releases its own data to Amazon. Second, the recommendation efficiency and scalability are often low when the user-service quality data of Amazon and IBM update frequently. Considering these challenges, a privacy-preserving and scalable service recommendation approach based on distributed locality-sensitive hashing, i.e., $\textit {SerRec}_{\textit {distri-LSH}}$ , is proposed in this paper to handle the service recommendation in a distributed cloud environment. Extensive experiments on the WS-DREAM data set validate the feasibility of our approach in terms of service recommendation accuracy, scalability, and privacy preservation.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.