{"title":"A simultaneous multithreading processor architecture with predictable timing behavior","authors":"Hadley M. Siqueira, M. Kreutz","doi":"10.1109/SBESC.2018.00018","DOIUrl":null,"url":null,"abstract":"Real-time embedded systems need software and hardware to be time-predictable to guarantee the correct behavior of the system. Precision Timed Machines are architectures designed for timing predictability and repeatability. They help to improve design time and the efficiency of real-time embedded systems by allowing to separately verify the timing properties of modules. This paper presents a Simultaneous Multithreading Precision Timed Machine named Hivek-RT that can execute hard real-time and conventional threads in parallel. It employs a repeatable thread-interleaved pipeline with an exposed memory hierarchy composed of scratchpads, caches, and a predictable SDRAM memory controller. The proposed architecture is well suited for real-time embedded systems as experimentation results show that the proposed architecture has improved throughput, presents low memory footprint and achieve a memory bandwidth of 90% of the theoretical value while providing deterministic time access to the memory hierarchy. This paper is an extended version of the paper presented on the 8th Brazilian Symposium on Computing Systems Engineering.","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"24 1","pages":"45-62"},"PeriodicalIF":0.9000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SBESC.2018.00018","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/SBESC.2018.00018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Real-time embedded systems need software and hardware to be time-predictable to guarantee the correct behavior of the system. Precision Timed Machines are architectures designed for timing predictability and repeatability. They help to improve design time and the efficiency of real-time embedded systems by allowing to separately verify the timing properties of modules. This paper presents a Simultaneous Multithreading Precision Timed Machine named Hivek-RT that can execute hard real-time and conventional threads in parallel. It employs a repeatable thread-interleaved pipeline with an exposed memory hierarchy composed of scratchpads, caches, and a predictable SDRAM memory controller. The proposed architecture is well suited for real-time embedded systems as experimentation results show that the proposed architecture has improved throughput, presents low memory footprint and achieve a memory bandwidth of 90% of the theoretical value while providing deterministic time access to the memory hierarchy. This paper is an extended version of the paper presented on the 8th Brazilian Symposium on Computing Systems Engineering.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.