Length scales and scale-free dynamics of dislocations in dense solid solutions

Gábor Péterffy, Péter D. Ispánovity, Michael E. Foster, Xiaowang Zhou, Ryan B. Sills
{"title":"Length scales and scale-free dynamics of dislocations in dense solid solutions","authors":"Gábor Péterffy,&nbsp;Péter D. Ispánovity,&nbsp;Michael E. Foster,&nbsp;Xiaowang Zhou,&nbsp;Ryan B. Sills","doi":"10.1186/s41313-020-00023-z","DOIUrl":null,"url":null,"abstract":"<p>The fundamental interactions between an edge dislocation and a random solid solution are studied by analyzing dislocation line roughness profiles obtained from molecular dynamics simulations of Fe<sub>0.70</sub>Ni<sub>0.11</sub>Cr<sub>0.19</sub> over a range of stresses and temperatures. These roughness profiles reveal the hallmark features of a depinning transition. Namely, below a temperature-dependent critical stress, the dislocation line exhibits roughness in two different length scale regimes which are divided by a so-called correlation length. This correlation length increases with applied stress and at the critical stress (depinning transition or yield stress) formally goes to infinity. Above the critical stress, the line roughness profile converges to that of a random noise field. Motivated by these results, a physical model is developed based on the notion of coherent line bowing over all length scales below the correlation length. Above the correlation length, the solute field prohibits such coherent line bow outs. Using this model, we identify potential gaps in existing theories of solid solution strengthening and show that recent observations of length-dependent dislocation mobilities can be rationalized.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-020-00023-z","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-020-00023-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The fundamental interactions between an edge dislocation and a random solid solution are studied by analyzing dislocation line roughness profiles obtained from molecular dynamics simulations of Fe0.70Ni0.11Cr0.19 over a range of stresses and temperatures. These roughness profiles reveal the hallmark features of a depinning transition. Namely, below a temperature-dependent critical stress, the dislocation line exhibits roughness in two different length scale regimes which are divided by a so-called correlation length. This correlation length increases with applied stress and at the critical stress (depinning transition or yield stress) formally goes to infinity. Above the critical stress, the line roughness profile converges to that of a random noise field. Motivated by these results, a physical model is developed based on the notion of coherent line bowing over all length scales below the correlation length. Above the correlation length, the solute field prohibits such coherent line bow outs. Using this model, we identify potential gaps in existing theories of solid solution strengthening and show that recent observations of length-dependent dislocation mobilities can be rationalized.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密集固溶体中位错的长度尺度和无标度动力学
通过分析Fe0.70Ni0.11Cr0.19在不同应力和温度下的分子动力学模拟得到的位错线粗糙度分布,研究了位错与随机固溶体之间的基本相互作用。这些粗糙剖面揭示了蜕皮转变的标志性特征。也就是说,在温度相关的临界应力下,位错线在两种不同的长度范围内表现出粗糙度,这两种长度范围由所谓的相关长度划分。这种相关长度随着外加应力的增加而增加,并在临界应力(脱屑过渡或屈服应力)处趋于无穷大。在临界应力以上,直线粗糙度曲线收敛于随机噪声场的粗糙度曲线。基于这些结果,基于相关长度以下的所有长度尺度上的相干线弯曲的概念,开发了一个物理模型。在相关长度以上,溶质场禁止这种相干线弓出。利用该模型,我们确定了现有的固溶体强化理论中的潜在空白,并表明最近对长度相关位错迁移率的观察可以合理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
期刊最新文献
An informatics method for inferring the hardening exponent of plasticity in polycrystalline metals from surface strain measurements Multiscale modelling of precipitation hardening: a review Junction formation rates, residence times, and the rate of plastic flow in FCC metals A model for physical dislocation transmission through grain boundaries and its implementation in a discrete dislocation dynamics tool Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1