{"title":"Experimental study on the information disclosure problem: Branch-and-bound and QUBO solver","authors":"Keisuke Otaki, Akihisa Okada, Hiroaki Yoshida","doi":"10.3389/fams.2023.1150921","DOIUrl":null,"url":null,"abstract":"The aim of this study was to explore the information disclosure (ID) problem, which involves selecting pairs of two sides before matching toward user-oriented optimization. This problem is known to be useful for mobility-on-demand (MoD) platforms because drivers' choice behaviors are appropriately modeled, but solving the problem is still under development, although heuristic solvers have been proposed. We develop new branch-and-bound-based (BnB) solvers and a new heuristic solver based on a quadratic unconstrained binary optimization (QUBO) formulation. Our numerical experiments show that the QUBO-based solver indeed works within the limit of available bits, and the BnB solver performs slightly better than existing heuristic ones.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1150921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to explore the information disclosure (ID) problem, which involves selecting pairs of two sides before matching toward user-oriented optimization. This problem is known to be useful for mobility-on-demand (MoD) platforms because drivers' choice behaviors are appropriately modeled, but solving the problem is still under development, although heuristic solvers have been proposed. We develop new branch-and-bound-based (BnB) solvers and a new heuristic solver based on a quadratic unconstrained binary optimization (QUBO) formulation. Our numerical experiments show that the QUBO-based solver indeed works within the limit of available bits, and the BnB solver performs slightly better than existing heuristic ones.