Asymptotic behavior of the prediction error for stationary sequences

IF 1.3 Q2 STATISTICS & PROBABILITY Probability Surveys Pub Date : 2022-10-12 DOI:10.1214/23-ps21
N. Babayan, M. Ginovyan
{"title":"Asymptotic behavior of the prediction error for stationary sequences","authors":"N. Babayan, M. Ginovyan","doi":"10.1214/23-ps21","DOIUrl":null,"url":null,"abstract":"One of the main problem in prediction theory of discrete-time second-order stationary processes $X(t)$ is to describe the asymptotic behavior of the best linear mean squared prediction error in predicting $X(0)$ given $ X(t),$ $-n\\le t\\le-1$, as $n$ goes to infinity. This behavior depends on the regularity (deterministic or nondeterministic) and on the dependence structure of the underlying observed process $X(t)$. In this paper we consider this problem both for deterministic and nondeterministic processes and survey some recent results. We focus on the less investigated case - deterministic processes. It turns out that for nondeterministic processes the asymptotic behavior of the prediction error is determined by the dependence structure of the observed process $X(t)$ and the differential properties of its spectral density $f$, while for deterministic processes it is determined by the geometric properties of the spectrum of $X(t)$ and singularities of its spectral density $f$.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ps21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

One of the main problem in prediction theory of discrete-time second-order stationary processes $X(t)$ is to describe the asymptotic behavior of the best linear mean squared prediction error in predicting $X(0)$ given $ X(t),$ $-n\le t\le-1$, as $n$ goes to infinity. This behavior depends on the regularity (deterministic or nondeterministic) and on the dependence structure of the underlying observed process $X(t)$. In this paper we consider this problem both for deterministic and nondeterministic processes and survey some recent results. We focus on the less investigated case - deterministic processes. It turns out that for nondeterministic processes the asymptotic behavior of the prediction error is determined by the dependence structure of the observed process $X(t)$ and the differential properties of its spectral density $f$, while for deterministic processes it is determined by the geometric properties of the spectrum of $X(t)$ and singularities of its spectral density $f$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平稳序列预测误差的渐近性态
离散时间二阶平稳过程$X(t)$的预测理论中的一个主要问题是,当$n$变为无穷大时,在给定$X(t),$$-n\le t\le-1$的情况下,描述预测$X(0)$的最佳线性均方预测误差的渐近性态。这种行为取决于规律性(确定性或非确定性)和底层观察过程$X(t)$的依赖结构。在本文中,我们考虑了确定性和不确定性过程的这个问题,并综述了最近的一些结果。我们专注于研究较少的案例确定性过程。结果表明,对于非确定性过程,预测误差的渐近行为是由观测过程$X(t)$的依赖结构及其谱密度$f$的微分性质决定的,而对于确定性过程,它是由$X(t)$的谱的几何性质及其谱密度$f$的奇异性决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
期刊最新文献
Probabilistic representations of fragmentation equations L2-small ball asymptotics for Gaussian random functions: A survey Models of random subtrees of a graph Numerical methods for backward stochastic differential equations: A survey From Markov processes to semimartingales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1