Robust Model-Free Software Sensors for the HIV/AIDS Infection Process

H. Alazki, A. Poznyak
{"title":"Robust Model-Free Software Sensors for the HIV/AIDS Infection Process","authors":"H. Alazki, A. Poznyak","doi":"10.4236/IJMNTA.2017.62004","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of the HIV/AIDS Infection Process filtering characterized by three compounds, namely, the number of healthy T-cells, the number of infected T-cells and free virus particles. Only the first and third of them can be measurable during the medical treatment process. Moreover, the exact parameter values are admitted to be also unknown. So, here we deal with an uncertain dynamic model that excludes the application of classical filtering theory and requires the application of robust filters successfully working in the absence of a complete mathematical model of the considered process. The problem is to estimate the number of infected T-cells based on the available information. Here we admit the presence of stochastic “white noise” in current observations. To do that we apply the Luenberger-like filter (software sensor) with a matrix gain, which should be adjusted at the beginning of the process in such a way that the filtering error would be as less as possible using the Attractive Ellipsoid Method (AEM). It is shown that the corresponding trajectories of the filtering error converge to an ellipsoidal set of a prespecified form in mean-square sense. To generate the experimental data sequences in the test-simulation example, we have used the well-known simplified HIV/ AIDS model. The obtained results confirm the effectiveness of the suggested approach.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"06 1","pages":"39-58"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2017.62004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the problem of the HIV/AIDS Infection Process filtering characterized by three compounds, namely, the number of healthy T-cells, the number of infected T-cells and free virus particles. Only the first and third of them can be measurable during the medical treatment process. Moreover, the exact parameter values are admitted to be also unknown. So, here we deal with an uncertain dynamic model that excludes the application of classical filtering theory and requires the application of robust filters successfully working in the absence of a complete mathematical model of the considered process. The problem is to estimate the number of infected T-cells based on the available information. Here we admit the presence of stochastic “white noise” in current observations. To do that we apply the Luenberger-like filter (software sensor) with a matrix gain, which should be adjusted at the beginning of the process in such a way that the filtering error would be as less as possible using the Attractive Ellipsoid Method (AEM). It is shown that the corresponding trajectories of the filtering error converge to an ellipsoidal set of a prespecified form in mean-square sense. To generate the experimental data sequences in the test-simulation example, we have used the well-known simplified HIV/ AIDS model. The obtained results confirm the effectiveness of the suggested approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于HIV/AIDS感染过程的鲁棒无模型软件传感器
本文研究了以健康T细胞数量、感染T细胞数量和游离病毒颗粒三种化合物为特征的HIV/AIDS感染过程过滤问题。在医疗过程中,只有第一个和第三个可以测量。此外,确切的参数值也被认为是未知的。因此,在这里,我们处理一个不确定的动态模型,该模型排除了经典滤波理论的应用,并要求应用鲁棒滤波器,在缺乏所考虑过程的完整数学模型的情况下成功工作。问题是根据现有信息来估计感染的T细胞的数量。在这里,我们承认当前观测中存在随机“白噪声”。为此,我们应用了具有矩阵增益的类Luenberger滤波器(软件传感器),该滤波器应在过程开始时进行调整,以便使用吸引椭球方法(AEM)尽可能减小滤波误差。结果表明,滤波误差的相应轨迹在均方意义上收敛到一个预先指定形式的椭球集。为了在测试模拟示例中生成实验数据序列,我们使用了众所周知的简化HIV/AIDS模型。所获得的结果证实了所提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
111
期刊最新文献
Bifurcation Analysis of a Neutrophil Periodic Oscillation Model with State Feedback Control Periodical Bifurcation Analysis of a Type of Hematopoietic Stem Cell Model with Feedback Control The Classification to Stationary Process of Tidal Motion Observed at the Time of Kuroshio’s Meandering Turing Instability of Gray-Scott Reaction-Diffusion Model with Time Delay Effects Galerkin Method for Numerical Solution of Volterra Integro-Differential Equations with Certain Orthogonal Basis Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1