Nonparametric tests for treatment effect heterogeneity in observational studies

Pub Date : 2022-08-26 DOI:10.1002/cjs.11728
Maozhu Dai, Weining Shen, Hal S. Stern
{"title":"Nonparametric tests for treatment effect heterogeneity in observational studies","authors":"Maozhu Dai,&nbsp;Weining Shen,&nbsp;Hal S. Stern","doi":"10.1002/cjs.11728","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of testing for treatment effect heterogeneity in observational studies and propose a nonparametric test based on multisample <math>\n <semantics>\n <mrow>\n <mi>U</mi>\n </mrow>\n <annotation>$$ U $$</annotation>\n </semantics></math>-statistics. To account for potential confounders, we use reweighted data where the weights are determined by estimated propensity scores. The proposed method does not require any parametric assumptions on the outcomes and bypasses the need for modelling the treatment effect for each study subgroup. We establish the asymptotic normality for the test statistic and demonstrate its superior numerical performance over several competing approaches via simulation studies. Two real data applications are discussed: an employment programme evaluation study and a mental health study of China's one-child policy.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of testing for treatment effect heterogeneity in observational studies and propose a nonparametric test based on multisample U $$ U $$ -statistics. To account for potential confounders, we use reweighted data where the weights are determined by estimated propensity scores. The proposed method does not require any parametric assumptions on the outcomes and bypasses the need for modelling the treatment effect for each study subgroup. We establish the asymptotic normality for the test statistic and demonstrate its superior numerical performance over several competing approaches via simulation studies. Two real data applications are discussed: an employment programme evaluation study and a mental health study of China's one-child policy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
观察性研究中治疗效果异质性的非参数检验
我们考虑了观察性研究中治疗效果异质性的检验问题,并提出了一种基于多样本U$$U$$统计的非参数检验。为了解释潜在的混杂因素,我们使用重新加权的数据,其中权重由估计的倾向得分确定。所提出的方法不需要对结果进行任何参数假设,并且绕过了对每个研究亚组的治疗效果建模的需要。我们建立了检验统计量的渐近正态性,并通过模拟研究证明了其优于几种竞争方法的数值性能。讨论了两个真实数据应用:就业计划评估研究和中国独生子女政策的心理健康研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1