A multi-microcontroller-based hardware for deploying Tiny machine learning model

V. Nguyen, Vy Tran, H. Pham, Van-Muot Nguyen, Hoang-Dung Nguyen, Chi-Ngon Nguyen
{"title":"A multi-microcontroller-based hardware for deploying Tiny machine learning model","authors":"V. Nguyen, Vy Tran, H. Pham, Van-Muot Nguyen, Hoang-Dung Nguyen, Chi-Ngon Nguyen","doi":"10.11591/ijece.v13i5.pp5727-5736","DOIUrl":null,"url":null,"abstract":"The tiny machine learning (TinyML) has been considered to applied on the edge devices where the resource-constrained micro-controller units (MCUs) were used. Finding a good platform to deploy the TinyML effectively is very crucial. The paper aims to propose a multiple micro-controller hardware platform for productively running the TinyML model. The proposed hardware consists of two dual-core MCUs. The first MCU is utilized for acquiring and processing input data, while the second is responsible for executing the trained TinyML network. Two MCUs communicate to each other using the universal asynchronous receiver-transmitter (UART) protocol. The multi-tasking programming technique is mainly applied on the first MCU to optimize the pre-processing new data. A three-phase motors faults classification TinyML model was deployed on the proposed system to evaluate the effectiveness. The experimental results prove that our proposed hardware platform was improved 34.8% the total inference time including pre-processing data of the proposed TinyML model in comparing with single micro-controller hardware platform.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5727-5736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The tiny machine learning (TinyML) has been considered to applied on the edge devices where the resource-constrained micro-controller units (MCUs) were used. Finding a good platform to deploy the TinyML effectively is very crucial. The paper aims to propose a multiple micro-controller hardware platform for productively running the TinyML model. The proposed hardware consists of two dual-core MCUs. The first MCU is utilized for acquiring and processing input data, while the second is responsible for executing the trained TinyML network. Two MCUs communicate to each other using the universal asynchronous receiver-transmitter (UART) protocol. The multi-tasking programming technique is mainly applied on the first MCU to optimize the pre-processing new data. A three-phase motors faults classification TinyML model was deployed on the proposed system to evaluate the effectiveness. The experimental results prove that our proposed hardware platform was improved 34.8% the total inference time including pre-processing data of the proposed TinyML model in comparing with single micro-controller hardware platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于部署微小机器学习模型的基于多微控制器的硬件
微小机器学习(TinyML)已被认为应用于使用资源受限微控制器单元(MCU)的边缘设备。找到一个好的平台来有效地部署TinyML是非常关键的。本文旨在提出一个多微控制器硬件平台,以有效地运行TinyML模型。所提出的硬件由两个双核MCU组成。第一个MCU用于获取和处理输入数据,而第二个MCU负责执行经过训练的TinyML网络。两个MCU使用通用异步收发器(UART)协议相互通信。多任务编程技术主要应用在第一台单片机上,对新数据的预处理进行优化。在所提出的系统上部署了三相电机故障分类TinyML模型来评估其有效性。实验结果证明,与单个微控制器硬件平台相比,我们提出的硬件平台将所提出的TinyML模型的总推理时间(包括预处理数据)提高了34.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1