Anne-Sophie Plagnet, C. Bannelier, V. Fillon, D. Savietto
{"title":"Estimation of grass biomass consumed by rabbits housed in movable paddocks","authors":"Anne-Sophie Plagnet, C. Bannelier, V. Fillon, D. Savietto","doi":"10.4995/wrs.2023.18243","DOIUrl":null,"url":null,"abstract":"Biomass allowance is a key feature in pasture-based rabbit production systems. It conditions not only the stock density (rabbits/m²) and/or the number of grazing days, it also influences the grazing behaviour of animals. When herbage restriction occurs, pelleted feed and/or cereal intake goes up. Inadequate pasture management may also impair the biomass quantity and quality if overgrazing occurs. To avoid the undesirable effects of overgrazing and better manage pellet and cereal intake, information on both biomass availability and rabbits’ grazing capacity are needed. Here, we present an adaptation of the rising plate meter method (developed for biomass intake measures for ruminants) for use in rabbit. To this end, we designed an experiment where two groups of 12 rabbits each were kept in two different fields: under an apple orchard (AO) or on fallow land (FL). We followed the animals for 5 consecutive weeks (from 45 to 80 d old). Rabbits lived in 25 m² movable paddocks, and every week a new paddock location (called paddock-spot) was made available for them. At each new paddock-spot, we measured the herbage height inside the paddocks and performed samplings of the available biomass (i.e. herbage cut after herbage height measurement) outside the paddocks. From this data we estimated the available biomass inside each paddock-spot by fitting linear regression equations of biomass to herbage height. Overall, rabbits in the AO and FL had access to 1328±65.7 and 1386±58.6 kg of dry matter (DM) per ha, respectively. In every field and paddock-spot, the biomass available was lower than the rabbits’ grazing capacity; overgrazing was the rule. Roughly, and under a restricted herbage allowance, rabbits in the AO ingested 45.2 g DM/d and rabbits in the FL 43.4 g DM/d. In the last week (64 to 80 d old), the biomass intake of rabbits in the AO and AL represented 26.4 and 23.5% of the total DM intake, respectively. These values, however, does not represent the real grazing capacity of growing rabbits. In this study, we provide some advice on the sampling method to obtain reliable biomass estimations and we mention two methods for handling influential observations in linear regression.","PeriodicalId":23902,"journal":{"name":"World Rabbit Science","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Rabbit Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4995/wrs.2023.18243","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Biomass allowance is a key feature in pasture-based rabbit production systems. It conditions not only the stock density (rabbits/m²) and/or the number of grazing days, it also influences the grazing behaviour of animals. When herbage restriction occurs, pelleted feed and/or cereal intake goes up. Inadequate pasture management may also impair the biomass quantity and quality if overgrazing occurs. To avoid the undesirable effects of overgrazing and better manage pellet and cereal intake, information on both biomass availability and rabbits’ grazing capacity are needed. Here, we present an adaptation of the rising plate meter method (developed for biomass intake measures for ruminants) for use in rabbit. To this end, we designed an experiment where two groups of 12 rabbits each were kept in two different fields: under an apple orchard (AO) or on fallow land (FL). We followed the animals for 5 consecutive weeks (from 45 to 80 d old). Rabbits lived in 25 m² movable paddocks, and every week a new paddock location (called paddock-spot) was made available for them. At each new paddock-spot, we measured the herbage height inside the paddocks and performed samplings of the available biomass (i.e. herbage cut after herbage height measurement) outside the paddocks. From this data we estimated the available biomass inside each paddock-spot by fitting linear regression equations of biomass to herbage height. Overall, rabbits in the AO and FL had access to 1328±65.7 and 1386±58.6 kg of dry matter (DM) per ha, respectively. In every field and paddock-spot, the biomass available was lower than the rabbits’ grazing capacity; overgrazing was the rule. Roughly, and under a restricted herbage allowance, rabbits in the AO ingested 45.2 g DM/d and rabbits in the FL 43.4 g DM/d. In the last week (64 to 80 d old), the biomass intake of rabbits in the AO and AL represented 26.4 and 23.5% of the total DM intake, respectively. These values, however, does not represent the real grazing capacity of growing rabbits. In this study, we provide some advice on the sampling method to obtain reliable biomass estimations and we mention two methods for handling influential observations in linear regression.
期刊介绍:
World Rabbit Science is the official journal of the World Rabbit Science Association (WRSA). One of the main objectives of the WRSA is to encourage communication and collaboration among individuals and organisations associated with rabbit production and rabbit science in general. Subject areas include breeding, genetics, production, management, environment, health, nutrition, physiology, reproduction, behaviour, welfare, immunology, molecular biology, metabolism, processing and products.
World Rabbit Science is the only international peer-reviewed journal included in the ISI Thomson list dedicated to publish original research in the field of rabbit science. Papers or reviews of the literature submitted to World Rabbit Science must not have been published previously in an international refereed scientific journal. Previous presentations at a scientific meeting, field day reports or similar documents can be published in World Rabbit Science, but they will be also subjected to the peer-review process.
World Rabbit Science will publish papers of international relevance including original research articles, descriptions of novel techniques, contemporaryreviews and meta-analyses. Short communications will only accepted in special cases where, in the Editor''s judgement, the contents are exceptionally exciting, novel or timely. Proceedings of rabbit scientific meetings and conference reports will be considered for special issues.
World Rabbit Science is published in English four times a year in a single volume. Authors may publish in World Rabbit Science regardless of the membership in the World Rabbit Science Association, even if joining the WRSA is encouraged. Views expressed in papers published in World Rabbit Science represent the opinion of the author(s) and do not necessarily reflect the official policy of the WRSA or the Editor-in-Chief.