{"title":"A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods","authors":"Xiu-juan Lei, Mei Ma, Yuchen Zhang","doi":"10.2174/1574893618666230707123817","DOIUrl":null,"url":null,"abstract":"\n\nPredicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelli-gence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used.\n\n\n\nThe various computational methods involved in drug-related associations prediction have been re-viewed in this work. We have first summarized the drug, target, and disease-related mainstream public da-tasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suita-bility. We have then comprehensively investigated drug-related associations and introduced relevant computa-tional methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associa-tions.\n\n\n\nWe discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable neg-ative samples, extracting rich features, and developing powerful prediction models or ensemble strategies.\n\n\n\nThis review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related as-sociations.\n","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1574893618666230707123817","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelli-gence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used.
The various computational methods involved in drug-related associations prediction have been re-viewed in this work. We have first summarized the drug, target, and disease-related mainstream public da-tasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suita-bility. We have then comprehensively investigated drug-related associations and introduced relevant computa-tional methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associa-tions.
We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable neg-ative samples, extracting rich features, and developing powerful prediction models or ensemble strategies.
This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related as-sociations.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.