FairSubset: A tool to choose representative subsets of data for use with replicates or groups of different sample sizes

K. Ortell, Pawel M. Switonski, J. Delaney
{"title":"FairSubset: A tool to choose representative subsets of data for use with replicates or groups of different sample sizes","authors":"K. Ortell, Pawel M. Switonski, J. Delaney","doi":"10.14440/jbm.2019.299","DOIUrl":null,"url":null,"abstract":"High-impact journals are promoting transparency of data. Modern scientific methods can be automated and produce disparate samples sizes. In many cases, it is desirable to retain identical or pre-defined sample sizes between replicates or groups. However, choosing which subset of originally acquired data that best matches the entirety of the data set without introducing bias is not trivial. Here, we released a free online tool, FairSubset, and its constituent Shiny App R code to subset data in an unbiased fashion. Subsets were set at the same N across samples and retained representative average and standard deviation information. The method can be used for quantitation of entire fields of view or other replicates without biasing the data pool toward large N samples. We showed examples of the tool’s use with fluorescence data and DNA-damage related Comet tail quantitation. This FairSubset tool and the method to retain distribution information at the single-datum level may be considered for standardized use in fair publishing practices.","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2019.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

High-impact journals are promoting transparency of data. Modern scientific methods can be automated and produce disparate samples sizes. In many cases, it is desirable to retain identical or pre-defined sample sizes between replicates or groups. However, choosing which subset of originally acquired data that best matches the entirety of the data set without introducing bias is not trivial. Here, we released a free online tool, FairSubset, and its constituent Shiny App R code to subset data in an unbiased fashion. Subsets were set at the same N across samples and retained representative average and standard deviation information. The method can be used for quantitation of entire fields of view or other replicates without biasing the data pool toward large N samples. We showed examples of the tool’s use with fluorescence data and DNA-damage related Comet tail quantitation. This FairSubset tool and the method to retain distribution information at the single-datum level may be considered for standardized use in fair publishing practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fair子集:一个工具,用于选择具有代表性的数据子集,用于不同样本量的重复或组
高影响力期刊正在促进数据的透明度。现代科学方法可以自动化并产生不同大小的样本。在许多情况下,希望在重复或组之间保持相同或预定义的样本量。然而,在不引入偏差的情况下,选择与整个数据集最匹配的原始数据子集并非易事。在这里,我们发布了一个免费的在线工具fair子集,以及它的组成部分Shiny App R代码,以不偏不倚的方式对数据进行子集。子集在样本间设置为相同的N,并保留具有代表性的平均值和标准差信息。该方法可用于整个视场或其他重复的定量,而不会使数据池偏向于大N个样本。我们展示了该工具使用荧光数据和dna损伤相关的彗尾定量的例子。在公平出版实践中,这个公平子集工具和在单一数据级别保留分发信息的方法可以考虑标准化使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study. Combined T1-weighted MRI and diffusion MRI tractography of paraventricular, locus coeruleus, and dorsal vagal complex connectivity in brainstem-hypothalamic nuclei. Hematological parameters of the European hake (Merluccius merluccius) in Toroneos Gulf, northern Greece: A case study. Advanced UltraTech approach for distinguishing granulomatous from non-granulomatous corneal endothelial exudates in autoimmune rheumatic anterior uveitis. Extraordinary variance in meta-analysis of venom toxicity of 160 most lethal ophidians and guidelines for estimating human lethal dose range.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1